gudachaa1480
?>

Периметр параллелограмма равен 126 см. найдите его, если две из них относится как 4÷5. ..

Геометрия

Ответы

hvostna23
Одна сторона пусть=х, другая = у;
тогда периметр будет равен
Р=2х+2у = 2(х+у)
также известно, что
х: у = 4:5 = 0,8
откудова
х=0,8у
Подставим полученное значение Х в формулу периметра (=126)
126= 2(0,8у+у)
63=1,8у
у=63:1,8
у=35
теперь х=0,8у
х=0,8*35 = 28
agutty3

Теорема 1. Первый признак равенства треугольников. Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны (рис.2).

Доказательство. Рассмотрим треугольники ABC и A1B1C1, у которых АВ = A1B1, АС = A1C1 ∠ А = ∠ А1 (см. рис.2). Докажем, что Δ ABC = Δ A1B1C1.

Так как ∠ А = ∠ А1, то треугольник ABC можно наложить на треугольник А1В1С1 так, что вершина А совместится с вершиной А1, а стороны АВ и АС наложатся соответственно на лучи А1В1 и A1C1. Поскольку АВ = A1B1, АС = А1С1, то сторона АВ совместится со стороной А1В1 а сторона АС — со стороной А1C1; в частности, совместятся точки В и В1, С и C1. Следовательно, совместятся стороны ВС и В1С1. Итак, треугольники ABC и А1В1С1 полностью совместятся, значит, они равны.

Теорема 2. Второй признак равенства треугольников. Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны (рис. 34).

Замечание. На основе теоремы 2 устанавливается теорема 3.

Теорема 3. Сумма любых двух внутренних углов треугольника меньше 180°.

Из последней теоремы вытекает теорема 4.

Теорема 4. Внешний угол треугольника больше любого внутреннего угла, не смежного с ним.

Теорема 5. Третий признак равенства треугольников. Если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то такие треугольники равны

Объяснение:

arbat

Даны вершины треугольника АВС: А(-2; 0), В(-3; 2), С(1; -1).

1) Уравнение прямых AB, ВС и АС.

Вектор АВ = (-3)-(-2)=-1;  2-0=2) = (-1; 2).

Вектор ВС = (1-(-3)=4;  -1-2=-3) = (4; -3).

Вектор АС = (1-(-2)=3;  -1-0=-1) = (3; -1).

Каноническое уравнение прямой АВ:  (x + 2)/(-1) = y/2.

Каноническое уравнение прямой ВС:  (x + 3)/4 = (y - 2)/(-3).

Каноническое уравнение прямой АС:  (x - 1)/3 = (y + 1)/(-1).

2) Высота АК.

Найдем угловой коэффициент k1 прямой ВС.  Точки В(-3; 2), С(1; -1).

k1(ВС) = Δу/Δ х = (-1-2)/(1+3) = -3/4.

Найдем угловой коэффициент k перпендикуляра из условия перпендикулярности двух прямых: k1*k = -1.  

Подставляя вместо k1 угловой коэффициент данной прямой, получим:  (-3/4)*k = -1, откуда k = -1/(-3/4) = 4/3.  

Так как перпендикуляр проходит через точку А(-2; 0) и имеет k = (4/3), то будем искать его уравнение в виде: y-y0 = k(x-x0).  

Подставляя x0 = -2, k = (4/3), y0 = 0 получим уравнение высоты АК:  

y - 0 = (4/3)*(x + 2)  

или   y = (4/3)x + (8/3) или 4x  - 3у + 8 = 0.

Найдем точку пересечения с прямой ВС:  

Уравнение ВС:  (x + 3)/4 = (y - 2)/(-3) или у = (-3/4)х - (1/4).

Имеем систему из двух уравнений по прямым АК и ВС:

 y = (4/3)x + (8/3)

у = (-3/4)х - (1/4)

Приравняв правые части, имеем (25/12)х = -35/12.

Отсюда х  = -35/25 = -7/5 = -1,4.

у = (4/3)*(-7/5) + (8/3) = (4/5) = 0,8.

Точка К(-1,4; 0,8).

3) Модули сторон:  

АВ = √((-1)² + 2²) = √5.

АС = √(3² + (-1)²) = √10.

cos BAC = ((-1)*3 + 2(-1))/(√5√10) = -5/√50 = -1/√2 = -√2/2.

Угол ВАС равен 135 градусов.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Периметр параллелограмма равен 126 см. найдите его, если две из них относится как 4÷5. ..
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

zaalmix
si0000
Maksimova1320
Natella-874535
sychevao19975
molodoychek
Salko17
Усошина1059
shmanm26
nikomuneskazhu60
suxoruchenkovm171
dimari81
troyasport
Volkanovaa19
marani2