У параллелограмма всего 4 угла. В параллелограмме есть пара острых равных между собой углов, а также пара равных тупых углов (случай прямоугольника опустим, у него все углы равны, в этой задаче такого нет). Поэтому если мы найдем острый угол, а также тупой угол параллелограмма, то мы нашли все углы.
Теперь найдем их Ситуация следующая: есть две параллельные прямые, каждая из смежных с ними сторон является секущей. Получается, что имеются две пары односторонних друг для друга углов. Рассмотрим любую из них (для второй все то же самое)
Пусть - острый угол,
- тупой. Тогда имеет место соотношение
Известно, что сумма односторонних углов равна 180°, получаем вот такое уравнение:
ответ: 72°, 72°, 108°, 108°
Точка О - точка пересечения прямых
Угол между двумя пересекающимися прямыми всегда измеряется от 0 до 90 градусов (по определению)
И максимальную сумму AC+BD мы получим под углом в 90 градусов
Значит получим два равных прямоугольных треугольника
Обозначим AO=x
Предположим что AO=OC =x (так как отрезки изменяются пропорционально)
Значит и отрезки BO = DO = x (по равенству треугольников)
Тогда по теореме Пифагора AC = BD = x√2
AC+BD = 2x√2
AB+CD=AO+BO+CO+DO= 4x
Cократим на x и сразу видим что:
2√2 < 4
Значит AC+BD < AB + CD, ч.т.д
Поделитесь своими знаниями, ответьте на вопрос:
Сумма 2 углов равнобедренной трапеции равна 206 градусов найдите меньший угол трапеции ответ дайте в градусах
154:2=77°(меньший угол)