denisrogachv
?>

Длины сторон параллелограмма равны 15 17 а его диагональ 18 найдите площадь этого параллеограмма

Геометрия

Ответы

whitecatrussia5398
Параллелограмм состоит из двух одинаковых треугольников со сторонами 15,17,18
Площадь одного такого треугольника найдём по формуле Герона
S= \sqrt{p(p-a)(p-b)(p-c)} \\
p=\frac{a+b+c}{2}
Полупериметр
p = (15+17+18)/2 = 50/2 = 25
S = √(25*10*8*7) = 5*4√35 = 20√35
Площадь всего параллелограмма в два раза больше, 40√35
eliteclassic308
Пусть даны два прямоугольных треугольника АВС и А1В1С1, у которых <А=<А1=90°, <C=<C1 и высоты АН и А1Н1 равны.
Тогда и <B=<B1, так как сумма острых углов прямоугольного треугольника равна 90°, то есть <B=90-С, а <D1=90-С1.
Высоты АН и А1Н1 делят треугольники АВС и А1В1С1 на подобные.
Значит <BAH=<C, a <CAH=<B. Точно так же <B1A1H1=<C1,
a <C1A1H1=<B1. Но <C=<C1 a <B=<B1.
Значит <BAH=<B1A1H1, a <CAH=<C1A1H1.
Тогда прямоугольные треугольники АВН и А1В1Н1 равны по катету (АН=А1Н1 -дано)  и прилежащему острому углу (<BAH=<B1A1H1). Значит ВН=В1Н1.
Прямоугольные треугольники АСН и А1С1Н1 равны по катету (АН=А1Н1 -дано)  и прилежащему острому углу (<СAH=<С1A1H1). Значит СН=С1Н1.
ВС=ВН+СН, В1С1=В1Н1+С1Н1. Отсюда ВС=В1С1.
Гипотенузы треугольников ВС и В1С1 равны, острые углы их тоже равны, значит треугольники АВС и А1В1С1 равны по равенству гипотенузы и острому углу (третий признак).
Что и требовалось доказать.

Докажите равенство прямоугольных треугольников по острому углу и высоте, опущенной на гипотенузу
AnnaChulyukanova3
Пусть даны два прямоугольных треугольника АВС и А1В1С1, у которых <А=<А1=90°, <C=<C1 и высоты АН и А1Н1 равны.
Тогда и <B=<B1, так как сумма острых углов прямоугольного треугольника равна 90°, то есть <B=90-С, а <D1=90-С1.
Высоты АН и А1Н1 делят треугольники АВС и А1В1С1 на подобные.
Значит <BAH=<C, a <CAH=<B. Точно так же <B1A1H1=<C1,
a <C1A1H1=<B1. Но <C=<C1 a <B=<B1.
Значит <BAH=<B1A1H1, a <CAH=<C1A1H1.
Тогда прямоугольные треугольники АВН и А1В1Н1 равны по катету (АН=А1Н1 -дано)  и прилежащему острому углу (<BAH=<B1A1H1). Значит ВН=В1Н1.
Прямоугольные треугольники АСН и А1С1Н1 равны по катету (АН=А1Н1 -дано)  и прилежащему острому углу (<СAH=<С1A1H1). Значит СН=С1Н1.
ВС=ВН+СН, В1С1=В1Н1+С1Н1. Отсюда ВС=В1С1.
Гипотенузы треугольников ВС и В1С1 равны, острые углы их тоже равны, значит треугольники АВС и А1В1С1 равны по равенству гипотенузы и острому углу (третий признак).
Что и требовалось доказать.

Докажите равенство прямоугольных треугольников по острому углу и высоте, опущенной на гипотенузу

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Длины сторон параллелограмма равны 15 17 а его диагональ 18 найдите площадь этого параллеограмма
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

nikv568734
Kochinev7
myudanova631
Golubitskaya378
shtankosoyuz1629
Павловна1750
lovely138887
Lenuschakova1982316
pbttehnology
titancore
Ольга Сергей1822
venera2611
galereyaas1568
Koranna1986
НиколаевнаФ