Параллелограмм состоит из двух одинаковых треугольников со сторонами 15,17,18 Площадь одного такого треугольника найдём по формуле Герона
Полупериметр p = (15+17+18)/2 = 50/2 = 25 S = √(25*10*8*7) = 5*4√35 = 20√35 Площадь всего параллелограмма в два раза больше, 40√35
eliteclassic308
31.07.2020
Пусть даны два прямоугольных треугольника АВС и А1В1С1, у которых <А=<А1=90°, <C=<C1 и высоты АН и А1Н1 равны. Тогда и <B=<B1, так как сумма острых углов прямоугольного треугольника равна 90°, то есть <B=90-С, а <D1=90-С1. Высоты АН и А1Н1 делят треугольники АВС и А1В1С1 на подобные. Значит <BAH=<C, a <CAH=<B. Точно так же <B1A1H1=<C1, a <C1A1H1=<B1. Но <C=<C1 a <B=<B1. Значит <BAH=<B1A1H1, a <CAH=<C1A1H1. Тогда прямоугольные треугольники АВН и А1В1Н1 равны по катету (АН=А1Н1 -дано) и прилежащему острому углу (<BAH=<B1A1H1). Значит ВН=В1Н1. Прямоугольные треугольники АСН и А1С1Н1 равны по катету (АН=А1Н1 -дано) и прилежащему острому углу (<СAH=<С1A1H1). Значит СН=С1Н1. ВС=ВН+СН, В1С1=В1Н1+С1Н1. Отсюда ВС=В1С1. Гипотенузы треугольников ВС и В1С1 равны, острые углы их тоже равны, значит треугольники АВС и А1В1С1 равны по равенству гипотенузы и острому углу (третий признак). Что и требовалось доказать.
AnnaChulyukanova3
31.07.2020
Пусть даны два прямоугольных треугольника АВС и А1В1С1, у которых <А=<А1=90°, <C=<C1 и высоты АН и А1Н1 равны. Тогда и <B=<B1, так как сумма острых углов прямоугольного треугольника равна 90°, то есть <B=90-С, а <D1=90-С1. Высоты АН и А1Н1 делят треугольники АВС и А1В1С1 на подобные. Значит <BAH=<C, a <CAH=<B. Точно так же <B1A1H1=<C1, a <C1A1H1=<B1. Но <C=<C1 a <B=<B1. Значит <BAH=<B1A1H1, a <CAH=<C1A1H1. Тогда прямоугольные треугольники АВН и А1В1Н1 равны по катету (АН=А1Н1 -дано) и прилежащему острому углу (<BAH=<B1A1H1). Значит ВН=В1Н1. Прямоугольные треугольники АСН и А1С1Н1 равны по катету (АН=А1Н1 -дано) и прилежащему острому углу (<СAH=<С1A1H1). Значит СН=С1Н1. ВС=ВН+СН, В1С1=В1Н1+С1Н1. Отсюда ВС=В1С1. Гипотенузы треугольников ВС и В1С1 равны, острые углы их тоже равны, значит треугольники АВС и А1В1С1 равны по равенству гипотенузы и острому углу (третий признак). Что и требовалось доказать.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Длины сторон параллелограмма равны 15 17 а его диагональ 18 найдите площадь этого параллеограмма
Площадь одного такого треугольника найдём по формуле Герона
Полупериметр
p = (15+17+18)/2 = 50/2 = 25
S = √(25*10*8*7) = 5*4√35 = 20√35
Площадь всего параллелограмма в два раза больше, 40√35