Задача: Найти стороны прямоугольника, диагональ которого равна 20 см и образует с одной из сторон угол 35°.
Обозначим стороны прямоугольника за a и b, диагональ за c, ∠α пусть лежит напротив a. Используем формулу синуса угла для нахождения сторон прямоугольного Δ:
ответ: Стороны прямоугольника примерно равны 11,47 см и 16,38 см.
Задача: Найти углы равнобедренного треугольника, если его боковая сторона равна 13 см, а высота, проведенная к основанию, — 12 см.
Обозначим треугольник за АВС, высоту — за AH, опущенная на основу AC.
Высота делит равнобокий треугольник на два равных прямоугольных. AH=HC, ∠A=∠C.
Возьмем ΔABH и воспользуемся формулой синуса угла для нахождения градусной меры ∠A в прямоугольном Δ:
Смотрим на ΔABC:
∠C=∠A 67.38°
Из теоремы о сумме углов треугольника: ∠B = 180−(67.38*2) = 180−134.76 45.24°.
ответ: Градусные меры углов треугольника приблизительно равны 67.38°, 67.38° и 45.24°.
Задача: Найти периметр прямоугольного треугольника, если его катет и гипотенуза относятся как 3:5, а второй катет равен 36 см.
Обозначим известный катет за a = 36 (см), неизвестный катет за b = 3x (см), гипотенузу за c = 5x (см).
Воспользуемся т. Пифагора для нахождения неизвестной переменной:
b = 3x = 3*9 = 27 см
c = 5x = 5*9 = 45 см
P = a+b+c = 36+27+45 = 108 см
ответ: Периметр треугольника равен 108 см.
чертежи сам начерти, а я словами напишу:
3. Т.к. сумма углов треугольника всегда = 180°, то
∠A + ∠B + ∠C = 180°, ∠B = 60°, ∠C = 40°,
тогда ∠A = 180° - 60° - 40° = 80°,
т.к. AD - биссектриса, то ∠CAD = ∠BAD = ∠A/2 = 80°/2 = 40°,
Рассмотрим треугольник CAD, в нём ∠С = ∠CAD = 40°, и поэтому по известной теореме треугольник CAD равнобедренный, то есть AD=CD.
б) Рассмотрим треугольник ABD, против большего угла в треугольнике лежит большая сторона, поэтому AD > BD, но AD = CD, поэтому CD > BD.
4. Т.к. треугольник равнобедренный, то неизвестная сторона равна либо 5 см, либо 12 см. Но 5 см не годится, поскольку при этом не выполняется неравенство треугольника (сумма длин любых двух сторон треугольника всегда больше длины третьей стороны). 5 см + 5см = 10 см < 12 см. (неравенство треугольника не выполняется). Если же неизвестная сторона = 12 см, то неравенство треугольника выполняется.
ответ. 12 см.
5. Расстояние от т. K до прямой MN - это длина перпендикуляра, опущенного из этой точки на эту прямую. Проведем этот перпендикуляр KH.
∠N = 180° - ∠K - ∠M = 180° - 90° - 60° = 30°.
Рассмотрим прямоугольный треугольник KNH. Используем теорему: в прямоугольном треугольнике катет, лежащий против угла в 30°, равен половине гипотенузы, то есть KH = KN/2 = 32,6дм/2 = 16,3 дм.
ответ. 16,3 дм.
Поделитесь своими знаниями, ответьте на вопрос:
Основания трапеции равны 4, 5 дм и 8, 6 дм найти среднюю линию.
13,1дм/2=6,55дм