В окружность вписан квадрат со стороной 3√2 см. Найдите площадь правильного треугольника, описанного около этой окружности. Ля хотя бы пример решения скиньте, я на нём буду ориентироваться, заранее
Параллелограмм АВСД, АМ и ДМ - биссектрисы углов А и Д. УголА=уголС, уголВ=уголД, уголА+уголД=180, 1/2уголА+1/2уголД=180/2=90, треугольник АМД, уголАМД=180-(1/2уголА+1/2уголД)=180-90=90, треугольник АМД прямоугольный, АМ перпендикулярна МД и НД (Н - вместоN), только в равнобедренном треугольнике биссектриса=высоте, АМ-биссектриса=высота=медиана, АН=АД=10, уголАНД=уголАДН, уголВАМ=уголМАД, уголМАД=уголАМВ - как внутренние разносторонние, треугольник АВМ равнобедренный, АВ=ВМ, уголАДМ=уголВМН как соответственные=уголАНД, треугольник ВНМ равнобедренный, ВМ=ВН=АВ, Треугольник АНМ прямоугольный, ВМ-медиана=1/2 гипотенузы АН=10/2=5, АВ=СД=5, периметр=5+10+5+10=30
Nasteona1994
05.01.2023
Все ребра треугольной призмы равны. Найдите площадь основания призмы, если площадь ее полной поверхности равна 8+16√ 3
Полная площадь призмы равна сумме площадей двух оснований и площади боковой поверхности. Пусть ребро призмы равно а. Грани - квадраты, их 3. S бок=3а² S двух осн.=( 2 а²√3):4=( а²√3):2 По условию 3а²+(а²√3):2=8+16√3 Умножим обе стороны уравнения на 2 и вынесем а² за скобки: а²(6+√3)=16+32√3)=16(1+2√3) а²=16(1+2√3):(6+√3) Подставим значение а² в формулу площади правильного треугольника: S=[16*(1+2√3):(6+√3)]*√3:4 S=4(√3+6):(6+√3)=4 (ед. площади)
Думаю, решение понятно. Перенести решение на листок для Вас не составит труда.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
В окружность вписан квадрат со стороной 3√2 см. Найдите площадь правильного треугольника, описанного около этой окружности. Ля хотя бы пример решения скиньте, я на нём буду ориентироваться, заранее
ответ:27√3см²
Объяснение: