Объяснение:
Начнем с того, что подкоренные выражения всегда больше или равны нулю, следовательно наименьшее значение корня, которое мы сможем получить=0.Но, данные выражения одновременно равны быть нулю не могут:
Доказательство: предположим, что оба корня равны нулю, значит:
Мы можем увидеть, что x и y принимают разные значения в одном промежутке времени, а следовательно, обе части выражения не могут быть равны нулю, а следовательно возьмем одну пару из двух наименьших возможных значений: x=0,y=1:
Поделитесь своими знаниями, ответьте на вопрос:
При заданном прямоугольнике ABCD AB = 16 см AD = 12 см AC BC. Какая из прямых CD и BD является попыткой центрированного круга радиусом A 12 см.
В ромбе диагонали точкой пересечения делятся пополам (АО=ОС и ВО=OD).
Пусть ВО=х, тогда:
AC-BD=14
AC-2x=14
AC=14+2x
2·OC=2(x+7)
OC=x+7
Из ΔBCO по т. Пифагора:
x=-15 не подходит по смыслу задачи, поэтому один корень х=8.
ВО=х=8 см
ОС=х+7=8+7=15 см
АС=АО+ОС=15+15=30 см
BD=BO+OD=8+8=16 см
Вспомним такую формулу:
, где d₁, d₂ - диагонали параллелограмма(у нас ромб, а ромб-это тоже параллелограмм), a, b - стороны параллелограмма(у нас ромб, поэтому a=b).
Найдем диагонали, составив систему:
Пусть АС=х, BD=y.
Отрицательные значения нам не подходят, так как длинна - величина неотрицательная.
Тогда AC=x=30см, BD=y=16см.
ответ: