Условие не совсем корректное. В равностороннем треугольнике нет большей или меньшей стороны, на то он и равносторонний.
В сети можно найти несколько вариантов похожих задач с разными данными.
Вариант 1.
Решаем задачу о равнобедренном треугольнике АВС (АВ=ВС) с боковой стороной, равной 4, и большей стороной АС.
АС=0,75•(4+4)=6 см
Биссектриса угла против основания равнобедренного треугольника совпадает с высотой и медианой, поэтому АМ=СМ и ∆ АВМ=∆ СВМ – прямоугольные.
Искомое расстояние - высота МН треугольника АВМ.
cos BAM=AM:AB=3/4
MH=AM•sin HAM
sin(HAM)=√(1-cos*)=√(1- 9/16)=√7/4
MH=3√7/4
——
Возможно, задача все же о разностороннем треугольнике.
Вариант 2.
В разностороннем треугольнике большая сторона составляет 75% суммы двух других. Точка М, принадлежащая этой стороне, является концом биссектрисы треугольника. Найдите расстояние от точки М до меньшей стороны треугольника, если меньшая высота треугольника равна 4 см.
Здесь условие корректное - есть и большая сторона, и меньшая.
АС=0,75•(AB+BC)
По свойству биссектрисы треугольника ВМ делит противоположную углу сторону АС в отношении прилежащих сторон.
АВ:ВС=АМ:СМ
АМ=0,75 АВ
Меньшая высота - высота, проведена к большей стороне. ВК=4
Из формулы площади треугольника
ВК•AM=MH•AB
НМ=ВК•AM:AB ⇒ НМ=ВК•0,75 АВ:AB
HM=4•0,75=3 см
Єтот тест
Контрольный тест по теме: "Прямоугольные треугольники. Построение треугольника по трем элементам"
Система оценки: 5 балльная
Список во теста
Во Найдите углы треугольников, на которые медиана разбивает равносторониий треугольник.
Варианты ответов
определить невозможно
60°,40°,80°
60°,45°,45°
60°,30°,90°
Во Найдите сумму внешних углов треугольника, взятых по одному при каждой вершине.
Варианты ответов
определить невозможно
270°
360°
180°
Во Концы хорды окружности соединены с центром. Найдите углы получившегося треугольника, если один из них на 36 градусов больше другого. Рассмотрите все случаи.
Варианты ответов
48°,48°,84° или 38°,71°,71°
48°,48°,84° или 36°,72°,72°
78°,60°,42° или 48°,48°,84°
38°,71°,71° или 36°,72°,72°
Во Варианты ответов
KM < MN
KN = MN
MK = MN
MK > KN
KN + KM > MN
Во Одна из сторон равнобедренного треугольника на 12 см меньше другой. Найдите стороны треугольника, если его периметр равен 33 см. Рассмотрите все случаи.
Варианты ответов
13 см, 13 см, 7 см или 7 см, 7 см, 19 см.
3 см, 15 см, 15 см
3 см, 15 см, 15 см или 7 см, 7 см, 19 см
7 см, 7 см, 19 см
Во Варианты ответов
⊿ ABC - разносторонний
∠ KLM=90° ⇒KL ∥ BC
∠ BCO внешний угол ⊿ ABC
∠ DKN внешний угол ⊿ KLM
⊿ ABC - равнобедренный
⊿ ABC - тупоугольный
⊿ ABC - прямоугольный
Во Варианты ответов
BC и MO
нет параллельных отрезков
BA и OK
Во Во Определите вид треугольника по углам и стоорнам, если его углы относятся как:
Варианты ответов
разносторонний
равнобедренный
равнобедренный
остроугольный
прямоугольный
тупоугольный
равносторонний
Получите комплекты видеоуроков
Биология 7 класс. Позвоночные животные
Обществознание 7 класс ФГОС
Введение в общую биологию и экологию 9...
Химия 9 класс ФГОС
Мир мультимедиатехнологий 6 класс
Электронная тетрадь по информатике 5...
Алгебра 8 класс ФГОС
Электронная тетрадь по ОБЖ 5 класс
Поделитесь своими знаниями, ответьте на вопрос:
Задание на фото, мне нужно только 5, 6, 7
5. Могут, если этот угол прямой (рис. 1).
6. 180° · 3 = 540° (решение аналогично задаче в самом верху страницы учебника, только треугольников будет 3, а не 2; рис. 2).
7. Проведем отрезок BC (рис. 3). В любом треугольнике сумма внутренних углов равна 180°.
Тогда для треугольника KBC верно равенство:
∠KBC + ∠KCB + 120° = 180°
∠KBC + ∠KCB = 180° – 120° = 60°.
Для треугольника ABC:
(2x + ∠KBC) + (3x + ∠KCB) + 5x = 180°
(2x + 3x + 5x) + (∠KBC + ∠KCB) = 180°
10x + 60° = 180°
10x = 120°
x = 12°
2x = 24°; 3x = 36°; 5x = 60°