astenSA
?>

Даны точки: A (4; 1; 2); B (1; 0; 1); C (-1; 2; -1); D (3; 1; 0) Найти линейную комбинацию векторов AB - 3BC + 4CD

Геометрия

Ответы

Роман
Поскольку MP II AB; то ∠MPB = ∠PBA; а так как BP - биссектриса ∠ABC; то ∠MPB = ∠PBA = ∠PBC; следовательно, треугольник BMP равнобедренный, MB = MP;
Если теперь вспомнить (именно в этот момент :) ), что точка M - центр окружности, описанной вокруг ABC, то есть MB = MC = MA; то это значит, что точка P тоже лежит на описанной окружности. 
Получается, что ∠ACP и ∠ABP оба вписанные в окружность, описанную вокруг треугольника ABC и опираются на дугу AP этой окружности. Поэтому они равны. Очевидно, что ∠ABP равен половине ∠ABC; поэтому 
ответ ∠ACP = 32,5°
sve34166163
Дано не буду писать. Значит в 1. Угол АВС=180-45-75=60. (45-это угол 90 делит биссектриса и получаем по 45). Теперь ищем угол АСВ через большой треугольник. Он получается 180-90-60=30. Во второй пусть угол у меньшего катета равен 60. тогда напротив угол 30. Пусть гипотенуза будет Х, тогда катет, лежащий против угла в 30 градусов, равен половине гипотенузы и будет Х/2. Уравнение "Х+Х/2=3, Х=2", значит гипотенуза равна 2. В 3 большая сторона лежит напротив большего угла, то есть напротив угла А, а меньшая сторона лежит напротив меньшего угла, то есть напротив угла С. В 4 треугольник ДКЕ прямоугольный, угол ВДК=30, 3 лежит против 30 градусов, значит гипотенуза будет 6. а в большом треугольнике катет 6, лежит против угла 30 и гипотенуза ВЕ=12. КЕ=12-3=9

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Даны точки: A (4; 1; 2); B (1; 0; 1); C (-1; 2; -1); D (3; 1; 0) Найти линейную комбинацию векторов AB - 3BC + 4CD
Ваше имя (никнейм)*
Email*
Комментарий*