nikv568734
?>

Координаты центра окружности C(7;10 Напиши уравнение этой окружности, если... 1. ...окружность касается оси Ox: (x− )2+(y− )2= . 2. ...окружность касается оси Oy: (x− )2+(y− )2= .

Геометрия

Ответы

evavard
Точка равноудалена от сторон прямоугольного треугольника, => эта точка проектируется в центр вписанной в треугольник окружности.
радиус вписанной в треугольник окружности: r=(a+b-c)/2
1. по теореме Пифагора:
c²=a²+b². a=9 см, b=12 см
c²=9²+12². c=15 см
r=(9+12-15)/2.  r=3 см

2. прямоугольный треугольник: 
катет - расстояние от точки до плоскости треугольника, а=4 см
катет - радиус вписанной в треугольник окружности, b=3 см
гипотенуза - расстояние от точки до сторон треугольника, с. найти
c²=3²+4²
c=5
ответ: расстояние от точки до сторон прямоугольного треугольника 5 см
Sergei1805

Объяснение:

Свойство биссектрисы угла треугольника. Решение треугольников. Вычисление биссектрис, медиан, высот, радиусов вписанной и описанной окружностей. Формулы площади треугольника: формула Герона, выражение площади треугольника через радиус вписанной и описанной окружностей.

Вычисление углов с вершиной внутри и вне круга, угла между хордой и касательной.

Теорема о произведении отрезков хорд. Теорема о касательной и секущей. Теорема о сумме квадратов сторон и диагоналей параллелограмма

Вписанные и описанные многоугольники. Свойства и признаки вписанных и описанных четырехугольников.

Геометрические места точек.

Решение задач с геометрических преобразований и геометрических мест.

Теорема Чевы и теорема Менелая.

Эллипс, гипербола, парабола как геометрические места точек.

Неразрешимость классических задач на построение.

Треугольникомназывается фигура, которая состоит из трёх точек, не лежащих на одной прямой, и трёх отрезков, попарно соединяющих эти точки. Точки называются вершинамитреугольника, а  отрезки - его сторонами.

Биссектриса

Биссектриса угла – это луч, который исходит из его вершины, проходит между его сторонами и делит данный угол пополам. Биссектрисой треугольника называется отрезок биссектрисы угла треугольника, соединяющий вершину с точкой на противолежащей стороне этого треугольника.

Свойства биссектрис треугольника

· Биссектриса угла треугольника делит противоположную сторону в отношении, равном отношению двух прилежащих сторон.

· Биссектрисы внутренних углов треугольника пересекаются в одной точке. Это точка называется центром вписанной окружности.

· Биссектрисы внутреннего и внешнего углов перпендикулярны.

· Биссектрисы одного внутреннего и двух внешних углов треугольника пересекаются в одной точке. Эта точка — центр одной из трех вневписанных окружностей этого треугольника.

· Основания биссектрис двух внутренних и одного внешнего углов треугольника лежат на одной прямой, если биссектриса внешнего угла не параллельна противоположной стороне треугольника.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Координаты центра окружности C(7;10 Напиши уравнение этой окружности, если... 1. ...окружность касается оси Ox: (x− )2+(y− )2= . 2. ...окружность касается оси Oy: (x− )2+(y− )2= .
Ваше имя (никнейм)*
Email*
Комментарий*