Так как по условию xm+yn=5n, тоxm =(5-y)n если x не равно 0, то разделив левую и правую части уравнения на x, получим m =((5-y)/x) n, где ((5-y)/x) какое-то число.
По условию коллинеарности:Два вектора a и b коллинеарны, если существует число не равное нулю n такое, что a = n · b Следовательно, если a и b не коллинеарны то такого числа не существует. А в нашем примере такое число есть (при x не равном 0). Следовательно если x не равно 0, то векторы коллинеарны. А так как по условию они не коллинеарны, то x = 0. Тогда и y = 0. ответ: x = 0 и y = 0
Korneeva1856
07.07.2022
Пирамида КАВС, в основании треугольнк АВС, АВ=ВС=5, АС=6, О-центр описанной окружности, КО-высота пирамиды, КА=КС=КВ=корень10, АО=СО=ВО=радиусы описанной окружности, проводим высоту ВН на АС=медиане, АН=НС=1/2Ас=6/2=3, треугольник АВН прямоугольный, ВН=корень(АВ в квадрате-АН в квадрате)=корень(25-9)=4, площадьАВС=1/2*АС*ВН=1/2*4*6=12, радиус описанной=(АВ*ВС*АС)/(4*площадьАВС)=(5*5*6)/(4*12)=3,125=25/8, треугольник АОК прямоугольный, КО-высота=(КА в квадрате-АО в квадрате)=корень(10-625/64)=корень15/8
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
На рисунку TM - высота трикутника ATP. Знайдіть кути цього трикутника
если x не равно 0, то разделив левую и правую части уравнения на x, получим
m =((5-y)/x) n, где ((5-y)/x) какое-то число.
По условию коллинеарности:Два вектора a и b коллинеарны, если существует число не равное нулю n такое, что a = n · b
Следовательно, если a и b не коллинеарны то такого числа не существует.
А в нашем примере такое число есть (при x не равном 0).
Следовательно если x не равно 0, то векторы коллинеарны.
А так как по условию они не коллинеарны, то x = 0. Тогда и y = 0.
ответ: x = 0 и y = 0