▪ Пусть ∠CDЕ = α , тогда ∠ЕCD = 90° - α
В ΔBCD по т. синусов: ВС/sinα = 2R ⇒ BC = 2R•sinα
В ΔACD по т. синусов: AD/sin( 90° - α ) = 2R ⇒ AD = 2R•cosα
BC² + AD² = ( 2R•sinα )² + ( 2R•cosα )² = 4R²•sin²α + 4R²•cos²α = 4R²•( sin²α + cos²α ) = 4R²
Значит, ( BЕ² + CЕ² ) + ( AЕ² + KЕ² ) = 4R²
▪ По свойству пересекающихся хорд: CE • AE = BE • DE = PE • TE = ( R - d ) • ( R + d ) = R² - d²
AC² + BD² = ( CE + AE )² + ( BE + DE )² = CE² + AE² + BE² + DE² + 2•CE•AE + 2•BE•DE = 4R² + 4( R² - d² ) = 8R² - 4d² = 4•( 2R² - d² )===================================================================
Заметим, что при любом расположении хорд данное значение сохраняется. Пусть АС - диаметр окружности, тогда ОЕ = d
ΔBOD - равнобедренный ( ВО = ОD ) ⇒ OE - высота, биссектриса, медиана ⇒ ВЕ = DE
В ΔOED по т. Пифагора: ЕD = √( OD² - OE² ) = √( R² - d² ) ⇒ BD = 2√( R² - d² )
AC² + BD² = ( 2R )² + ( 2√( R² - d² ) )² = 4R² + 4( R² - d² ) = 8R² - 4d² = 4•( 2R² - d² )ОТВЕТ: 4•( 2R² - d² )Поделитесь своими знаниями, ответьте на вопрос:
Самостоятельная работа по теме "Площади". Вариант 1. №1. Найти площадь треугольника, если его основание 5 см, а высота 0, 2 дм. №2. Найти площадь прямоугольника, если его основание 7 см, а высота 4 см. №3. Найти площадь параллелограмма, если его основания 4 см, а высота 6 см. №4. НАйти площадь трапеции, если его основания 4 см и 0, 4 дм, а высота 6 см. №5. Одна из диагоналей ромба 8 см., площадь ромба 96 см2. Найти вторую диагональ.
ΔАВС - равнобедренный ( АС = ВС ) Поэтому ∠А=∠В; ∠А=40°=∠В. ∠В - основа ΔАВС; ∠В=180°-(∠А+∠В)=180°-80°=100°.
ответ: ∠С = 100°.