На рисунке изображены равные треугольники используя данные рисунка Укажите верное равенство угол P равно 45 градусов угол K равно 45 градусов угол M равно 45 градусов
Задача: Катеты прямоугольного треугольника равны 2 см и 4 см, Найдите катеты подобного ему прямоугольного треугольника, гипотенуза которого равна 6 см.
Итак, по теореме Пифагора гипотенуза данного нам треугольника равна с = √(4²+2²) = √20 = 2√5 см.
Коэффициент подобия треугольников - отношение сходственных сторон (гипотенуз) равен k = 6/2√5.
Cледовательно, k² = 36/20 = 1,8.
Зная, что отношение площадей подобных фигур равно квадрату коэффициента подобия, а площадь данного нам прямоугольного треугольника равна половине произведения его катетов, то есть 4 см², попробуем отыскать из данных вариантов нужные нам катеты прямоугольного треугольника, площадь которого равна S = k²·4 = 1,8·4 = 7,2 cм².
При всем желании сочетания катетов из предложенных нам вариантов, при котором
S = (1/2)·a·b = 7,2 см² нет:
А) S = (1/2)·3,2·4,4 = 7,04 см².
В) S = (1/2)·3,4·4,6 = 7,82 см².
С) S = (1/2)·3,6·4,8 = 8,64 см².
D) S = (1/2)·3,3·4,2 = 6,93 см².
buff-studio
23.05.2020
Обозначим вершины равнобедренного треугольника A,B, и C с основанием AC. По условию основание на 3 см меньше боковой стороны, значит боковая сторона на 3 см больше основания. Обозначим основание за x. Тогда боковая сторона будет равна (x+3)см. Составим и решим уравнение:x+(x+3)+(x+3)=18;x+x+3+x+3=18;3x+6=18;3x=12;x=12:3;x=4. Мы нашли основание AC, оно равно 4 см. Периметр равнобедренного треугольника равен:боковая сторона+боковая сторона+основание. Значит, сумма длин боковых сторон равна:18-основание AC=18-4=14.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
На рисунке изображены равные треугольники используя данные рисунка Укажите верное равенство угол P равно 45 градусов угол K равно 45 градусов угол M равно 45 градусов
Ни один из вариантов не подходит.
Объяснение:
Задача: Катеты прямоугольного треугольника равны 2 см и 4 см, Найдите катеты подобного ему прямоугольного треугольника, гипотенуза которого равна 6 см.
Итак, по теореме Пифагора гипотенуза данного нам треугольника равна с = √(4²+2²) = √20 = 2√5 см.
Коэффициент подобия треугольников - отношение сходственных сторон (гипотенуз) равен k = 6/2√5.
Cледовательно, k² = 36/20 = 1,8.
Зная, что отношение площадей подобных фигур равно квадрату коэффициента подобия, а площадь данного нам прямоугольного треугольника равна половине произведения его катетов, то есть 4 см², попробуем отыскать из данных вариантов нужные нам катеты прямоугольного треугольника, площадь которого равна S = k²·4 = 1,8·4 = 7,2 cм².
При всем желании сочетания катетов из предложенных нам вариантов, при котором
S = (1/2)·a·b = 7,2 см² нет:
А) S = (1/2)·3,2·4,4 = 7,04 см².
В) S = (1/2)·3,4·4,6 = 7,82 см².
С) S = (1/2)·3,6·4,8 = 8,64 см².
D) S = (1/2)·3,3·4,2 = 6,93 см².