Даны координаты вершин треугольника: А(х1; у1), В(х2; у2), С(х3; у3).
AM, BM – медианы треугольника, О – точка пересечения медиан.
Так как М – середина ВС, то её координаты: М(х2 + х3)/2; (у2 + у3)/2).
Находим координаты вектора АМ.
АМ = (((х2 + х3)/2) – х1; ((у2 + у3)/2)) – у1).
АМ = (((х2 + х3 – 2х1)/2); ((у2 + у3 – 2у1)/2)).
Далее используем свойство, что медианы точкой пересечения делятся в отношении 2 к 1, считая от вершины, то есть АО = 2*ОМ.
Тогда АО = (2/3) АМ.
Значит, координаты вектора АО равны:
АО = ((2/3)*((х2 + х3 – 2х1)/2); (2/3)*((у2 + у3 – 2у1)/2)).
АО = (((х2 + х3 – 2х1)/3); (((у2 + у3 – 2у1)/3)). (1)
Обозначим координаты точки О(хо; уо).
Выведем вектор АО через координаты точек А и О:
АО = ((хо – х1); (уо – у1)). (2)
Приравняем в выражениях (1) и (2) координаты точки О.
((хо – х1) = ((х2 + х3 – 2х1)/3),
(уо – у1) = ((у2 + у3 – 2у1)/3).
Отсюда получаем искомое выражение для определения координат точки пересечения медиан:
хо = ((х1 + х2 +х3)/3),
уо = ((у1 + у2 + у3)/3).
Поделитесь своими знаниями, ответьте на вопрос:
Похила АВ утворює з площиною кут 60°. Знайдіть відстань АО від кінця похилої до площини, якщо довжина похилої дорівнює 8√3 см.
1. К
2. IV
3. 7 или -5
4. (0;0,5)
5. 2√73
6. (3√3; 1) или (-3√3; 1)
7. ромб
Объяснение:
1. Координаты точки К (3;0)
2. Координаты x>0, y<0 могут быть только в IV четверти
3. АВ=10=
Приводим к квадратному уравнению
. Решаем через дискриминант и получаем х1=7, х2=(-5)
4. Координаты этой точки, допустим М (0;у) Нужно найти у. Поскольку эта точка М равноудалена от точек Д и Е, то расстояние между ними одинаковое, то есть по формуле расстояния между точками находим расстояния между ДМ и ЕМ и приравниваем. Решаем уравнение
и получаем у=0,5
5. Координаты точек А(х;0), В(0;у) В формулу середины отрезка подставляем эти координаты и координаты точки М(-3;8): (-3)=(х+0)/2 х=(-6); 8=(0+у)/2 у=16. Теперь по формуле расстояния между точками находим расстояние между точками АВ и получаем АВ=2√73
6. Вершина В может быть или в 1й четверти, или во 2й четверти. По формуле расстояния между точками находим расстояние между точками А и С. Получаем 6. Поскольку ABC равносторонний треугольник, то АС=АВ=ВС=6. По формуле расстояния между точками находим расстояния между АВ и ВС и приравниваем. Решаем уравнение
и получаем у=1.
Подставляем значение у=1 в любую из сторон уравнения и получаем х1= 3
, х2= -3
7. Если высчитать расстояние между точками, то есть стороны четырехугольника, то они равны: АВ=ВС=СД=АД=2
. То есть это либо ромб, либо квадрат. Дальше высчитываем длину диагоналей тоже как расстояние между точками: АС=2
, ВД=4
. То есть диагонали не равны, значит это не квадрат, а ромб.