Один из острых углов прямоугольного треугольника в два раза больше другого, а разность гипотенузы и меньшего катета равна 10 см. Чему равен этот катет?
после построения mn получается треугольник mne, подобный треугольнику cde по первому признаку подобия (угол е - общий, углы с и nme равны как соответственные углы при пересечении двух параллельных прямых cd и mn секущей се). поскольку треугольники подобны, то
< mne = < cde = 68°
зная, что развернутый угол равен 180°, находим угол dnm:
< dnm = 180 - < mne = 180 - 68 = 112°
поскольку dm - биссектриса, то угол mdn = < cde : 2 = 68 : 2 = 34°
зная два угла треугольника dmn, находим неизвестный угол:
Объем - это площадь основания на высоту. Площадь основания есть площадь ромба, а высоту можешь найти исходя из того, что диагональные сечения есть прямоугольники, ширина обеих - высота, а длины равны длинам соответствующих диагоналей. Произведение диагоналей находишь из определения площади ромба. S= произведение диагоналей делённое пополам, то есть ab/2. Отсюда ab=60. Это же произведение можно ещё представить, как (96/h) *(40\h) = 3840/(h^2), где h - высота
3840/h^2 = 60, откуда h^2 = 64, откуда h=8.
Объем равен 30*8 = 240
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Один из острых углов прямоугольного треугольника в два раза больше другого, а разность гипотенузы и меньшего катета равна 10 см. Чему равен этот катет?
после построения mn получается треугольник mne, подобный треугольнику cde по первому признаку подобия (угол е - общий, углы с и nme равны как соответственные углы при пересечении двух параллельных прямых cd и mn секущей се). поскольку треугольники подобны, то
< mne = < cde = 68°
зная, что развернутый угол равен 180°, находим угол dnm:
< dnm = 180 - < mne = 180 - 68 = 112°
поскольку dm - биссектриса, то угол mdn = < cde : 2 = 68 : 2 = 34°
зная два угла треугольника dmn, находим неизвестный угол:
< dmn = 180 - < mdn - < dnm = 180 - 34 - 112 = 34°