rinata542
?>

Втреугольнике авс известно, что нужно с

Геометрия

Ответы

serge-lysoff
Теорема: если прямая перпендикулярна радиусу и проходит через конец радиуса, лежащий на окружности, то она является касательной к окружности.

Дано: ω (О; ОА), прямая а, а⊥ОА, А∈а.
Доказать: а - касательная к окружности.
Доказательство:
Радиус перпендикулярен прямой а. Перпендикуляр - это кратчайшее расстояние от центра окружности до прямой. Значит, расстояние от центра до любой другой точки прямой будет больше, чем до точки А, и значит все остальные точки прямой лежат вне окружности.
Итак, прямая а и окружность имеют только одну общую точку А. Значит, прямая а - касательная к окружности.
veravlad

Радиус описанной окружности прямоугольного треугольника равен половине гипотенузы. Данный треугольник Пифагоров и гипотенуза равна 5см.

Точка М - центр описанной окружности.

Точка О - центр вписанной окружности.

Тогда R=2,5см, то есть ВМ=2,5см.

Радиус вписанной окружности равен по формуле:

r=(AC+BC-АВ)/2 = 2/2=1см.

Итак, СН=r=1см => HB=3-1=2см.

PB=HB=2см (касательные из одной точки).

Тогда МР=2,5-2=0,5см. В прямоугольном треугольнике ОМР по Пифагору:

ОМ=√(1²+0,5²)= √1,25 ≈ 1,118 ≈ 1,12см .

ответ: расстояние между центрами окружностей равно

√1,25 ≈ 1,12 см.

Или так: по теореме Эйлера в треугольнике расстояние между центрами вписанной и описанной окружностей находится по формуле:

d² = R² - 2·R·r.

В нашем случае R = 2,5см, а r = 1cм.

тогда d = √(2,5² -2·2,5) = √(2,5·0,5) = √1,25 ≈ 1,12 см.


Найдите расстояние между центрами вписанной и описанной окружностей прямоугольного треугольника с ка

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Втреугольнике авс известно, что нужно с
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Надежда-Алексеевна82
Решите задание 1! Только первое)
Japancosmetica
kseniyavaganova
rubanvladimir374
AlekseiMardanova
Doronin755
fruktovahere
bel1-79
Олег1105
lenarzhaeva
Shishkinna2002
ev89036973460
Светлана
elenaneretina
Gainalii1912