ответ:
x=4/3
объяснение:
2x-2x-4=6x-12
-6x=-12+4
-6x=-8
x=4/3
Смотри рисунок на прикреплённом фото.
1) ΔАСD ~ ΔABС по 1-му признаку подобия прямоугольных треугольников: если острый угол одного прямоугольного треугольника равен острому углу другого прямоугольного треугольника, то такие треугольники подобны. А у ΔАСD и ΔABС общий острый угол А.
2) Катет АС прямоугольного ΔАВС лежит против угла ∠В = 30°, значит АС равен половине гипотенузы АВ: АС = 0,5АВ = 0,5·12 = 6 (см).
Найдём коэффициент подобия ΔАСD и ΔABС по отношению их гипотенуз АС : АВ = 6/12 = 1/2. Следовательно, коэффициент подобия этих треугольников k = 1/2. Отношение площадей подобных треугольников равно квадрату коэффициента подобия.
S(ΔACD) : S(ΔABC) = k² = 1 : 4.
3) Найдём величину катета ВС, используя теорему Пифагора:
ВС = √(АВ² - АС²) = √(12² - 6²) = √108 = 6√3 (см)
Известно, что биссектриса угла делит противолежащую сторону на отрезки, пропорциональные прилежащим к углу сторонам. Поэтому СЕ : ВЕ = АС : АВ = 1/2.
Тогда СЕ = 1/3 · ВС = 2√3 (см) и ВЕ = 2/3 · ВС = 4√3 (см)
Дан ромб АВСД. У ромба все стороны равны. И равны Р/4=80/4=20.Диагонали пусть будут равны АС=3х и ВД=4х.
Диагонали ромба пересекаются под прямым углом, делятся пополам точкой пересечения О и соответственно образуют 4 равных прямоугольных треугольника. Рассмотрим один из них АОВ. Применим теорему Пифагора
АВ²=АО²+ВО²
20²=(1,5х)²+(2х)²
400=2,25х²+4х²
6,25х²=400
х=20/2,5
х=8
Значит катеты равны
АО=1,5х=12 см
ВО=2х=16 см
Найдем острые углы через тангенс
tg<A=BO/AO=16/12=4/3 (53°)
tg<B=AO/BO=12/16=3/4 (37°)
острые углы треугольника равны половине углов ромба, поэтому углы ромба равны 106° и 74°
Диагонали ромба равны 3х=24 см и 4х=32 см
Поделитесь своими знаниями, ответьте на вопрос:
Тікбұрышты авс үшбұрышының тік бұрышының с төбесі координаталар басында орналасқан катеттері 5см