Sadovskaya425
?>

1) сумма всех сторон многоугольника 2) древнегреческий учёный написавший сочинение "начало" 3) прибор для построения прямых углов на местности 4) отрезок соединяющий вершину треугольника с серединой противоположной стороны

Геометрия

Ответы

Хабарьева Андрей1056
4 вопрос это медиана
missimeri

Для нахождения высоты трапеции из вершин меньшего основания B и C опустим на большее основание две высоты. обозначим: AM = a,  KD = b. => MBCK - прямоугольник.

=>

1. AD = AM+BC+KD 

a + 5 + b = 10 
a = 5 - b

2. Тр-ки DBM и ACK - пр-ные, так их прямые углы образованы высотами трапеции.

3. Высота трапеции - h. Тогда по теореме Пифагора:

1)h2 + (10 - a)2 = 122

и
2)h2 + (10 - b)2 = 92

 

 

 

Подставим 5-b в первое:

1) h2+(5+b)2=144

h2=144-(5+b)2

 

2)подставим h2=144-(5+b)2

во второе

 

Подставим значение квадрата высоты во второе уравнение, полученное по Теореме Пифагора. Получим:

 

144 - (5 + b)2 + (10 - b)2= 81 ; далее:

144 - (25 + 10b + b2) + 100 - 20b + b2 - 81=0

119 -1 0b - 20b- 81+100=0

-30b = -138

b= 4,6 = KD

h2=144 - (5 + 4,6)2

h2=51,84

h=7,2

Найдем площадь трапеции через ее высоту и полусумму оснований 
S=((a + b)h)/2, где a b - основания трапеции, h - высота трапеции

S=((10 + 5)*7,2)/2

S= 54 см2

 

PivovarovaIlina1437

Это хоть на задачи похоже.

 

4. Центры окружностей образуют равнобедренный треугольник со сторонами 

24 + 15 = 39 (это две боковые стороны) и 15 + 15 = 30 (это основание). Высота к основанию легко находится, поскольку вместе с половиной основания 15 и боковой стороной 39 образует прямоугольный треугольник (15, 36, 39) (Пифагорова тройка). Высота равна 36.

Центр "внутренней" окружности расположен на этой высоте, пусть его радиус r. Расстояния от него до вершин (центров остальных окружностей) равны 15 + r, 15 + r, 24 + r. Поэтому расстояние от этого центра до основания (линии центров окружностей радиуса 15) равно 36 - (24 + r) = 12 - r;

Отсюда (15 + r)^2 = 15^2 + (12 - r)^2; 2(15 + 12)r = 12^2; r = 72/27;

 

5. Если продлить сторону квадрата, из вершины которой выходит касательная, до ВТОРОГО пересечения с окружностью, и обозначить эту хорду х, то 

2^2 = 1(x+1); x = 3; 

в результате имеются две взаимно перпендикулярные хорды длины 1 и 3, ясно, что отрезок, соединяющий их НЕ ОБЩИЕ концы - диаметр, то есть

D^2 = 1^2 + 3^2 = 10; R^2 = 5/2;

 

2. Если обозначить H - высота трапеции ABCD, h - высота трапеции MNCB, m = MN; a = AD; b = BC; то

(m + b)h = (a + b)H/2;

(m + a)(H - h) = (a + b)H/2; 

(Это все потому, что площади трапеций NMCB и ADMN равны половине площади ABCD) 

Пусть x = h/H; тогда

(m + b)x = (a + b)/2;

(m + a)(1 - x) = (a + b)/2;

Складывая оба уравнения, легко находим

x = (m - b)/(a - b);

m^2 = (a^2 + b^2)/2;

подставляем числа из условия, получаем m = 5;

 

1. Площадь ЧЕТЫРЕХУГОЛЬНИКА ABMN равна 7*8/2 = 28;

Если обозначить AC = b; BC = a, то

Площадь треугольника АВС равна S = absin(C)/2

Площадь треугольника MNС равна (a/2)b(1-0,4)sin(C)/2 = 3S/10;

Поэтому площадь ABMN равна 7S/10 = 28; откуда S = 40;

 

3. самая прикольная задачка.

Пусть CD = b; СЕ = a;

Теорема синусов для тр-ка ADC (Ф - угол ВАС)

b/sinФ = AD/sin30 = 2; b = 2sinФ;

Теорема синусов для тр-ка ACE 

a/sinФ = AE/sin120 = 2√3; a = 2√3sinФ;

Треугольник DCE прямоугольный, с гипотенузой DE  =2;

a^2 + b^2 = 4;

Откуда sinФ = 1/2; отсюда сразу следует, что треугольник АСЕ равнобедренный с углом при вершине 120 (при основании - два угла по 30). Но это в решении не пригождается, так как h - высоту АВС, то есть расстояние от С до АВ, проще всего найти из треугольника CDE

ab = 2h; но уже найдены b = 1 и а = √3; поэтому h = √3/2;

площадь АВС равна (√3/2)*(4√3)/2 = 3.

 

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

1) сумма всех сторон многоугольника 2) древнегреческий учёный написавший сочинение "начало" 3) прибор для построения прямых углов на местности 4) отрезок соединяющий вершину треугольника с серединой противоположной стороны
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Барскова1943
Melsan19914239
Юрьевна174
Олеся
Сергей_Комарова899
Yurevich1344
steff77
Vasilevna_Utenkova651
Styazhkin395
ИльяАндреевич-Мария
olyavoznyak
musaevartur
SERGEI124
evsmorodina
Дил1779