3 21/128 или прибл.=3.16
Объяснение:
Проведем биссетрису АР , Р точка пересечения биссектрисы со стороной ВС.
Пользуясь теоремой о биссектрисе (1)
АВ/AC=BP/PC
Найдем ВР и РС
ВР=21:24*9=21*3:8
РС=21:24*15=21*5:8
Тогда длина биссектрисы находится по формуле:
АР²=АВ*АС-ВР*РС=9*15-21*3*21*5:8:8
АР²=2025:64
АР=45/8
Теперь проведем биссектрису ВК. Точка пересечения ее с биссектрисой АР по условию задачи - I.
Pассмотрим треугольник ВАР. По уже упомянутой ранее теореме о биссектрисе (1) AI/IP=AB/BP
AI/IP=9/(21*3/9)=9*9/21/3=9/7 => AI/AP=9/16
Тогда AI= AP:16*9= 45*9/16/8 =3 21/128 или прибл.=3.16
Поделитесь своими знаниями, ответьте на вопрос:
7 сынып өзіңді тексер 133 бет 4 тарау геометрия
нижнее основание ad = 33верхнее bc = 15точка пересечения диагоналей ообозначим угол oad = x, с учётом свойст биссектрисы и накрест лежащих углов этому же иксу равны и оав, и овс, и всо.треугольник авс равнобедренный ав = всопускаем высоту вк на adbk^2 = ab^2 - ak^2 = 15^2 - ((33-15/2)^2 = 12^2s = 12 * (15+33)/2 = 2882) сумма длин радиусов вписанной и описанной окружности r + r = 7 sqrt(3)/2обозначим сторону буквой амедиана (высота, биссектриса) равна a sqrt(3)/2две трети медианы - радиус описанной окружностиодна треть - радиус вписанной (эти два утверждения справедливы только для правильного треугльника)сумма радиусов нам данаa sqrt(3)/2 = 7 sqrt(3)/2a = 7периметр 21s = 7 * 7 sqrt(3)/4 = 21 sqrt(3)/4