В треугольнике ABC угол C равен 90°, AB = АС•√2, BC = 6. Найдите высоту CН. По т.Пифагора АВ²=АС²+ВС² АВ²-АС²=ВС² Примем АС=а. Тогда гипотенуза АВ=а√2. 2а²-а²=36⇒ а=√36=6 a√2=6√2 АС=ВС - треугольник равнобедренный. В равнобедренном треугольнике высота, проведенная к основанию, совпадает с медианой. В равнобедренном прямоугольном треугольнике высота из прямого угла=0,5 гипотенузы ( по свойству медианы из прямого угла). СН =(6√2):2=3√2
Иногда эту высоту требуется записать в ответе как √2CH. Тогда, так как √2•3•√2=6, в ответе пишется 6.
Анатольевич1707
18.04.2022
Формула: с²=а²+в² 1. с²= 13²+12²= 169+144=313
с=
2. Гипотенуза 8+2=10 см Нужно найти катет, допустим катет "а"
а²=с²-в²=100-64=36 а=6
3. Найдём ещё 1 катет, допустим "в" в²=с²-а²=(25-15)(25+15)=10×40=400 в=
Sabc = a×в:2=20×15:2=300:2=150 см²
4. В треугольнике нет диагоналей, там либо биссектрисы, либо высоты, либо медианы.
5. Диагонали (*) пересечения делятся пополам => 12:2=6 - одна половина диагонали, например ОС. Получаем прямоугольный треугольник найдём катет этого треугольника c=10, a=6, в-? в²= 100-36=64 в= Отсюда находим вторую диагональ 8+8=16 см Sabcd=d1 × d2 :2= 16×12:2=192:2=96 см²
6. Т. к. у нас есть высота => у нас получается параллелограм (АВСЕ, СЕ-высота) Значит, ВС=АЕ=15 как противоположные стороны в параллелограме Теперь можем найти ЕD=АD-АЕ=36-15=21 Рассмотрим треугольник СЕD - прямоугольный. По теореме Пифагора с²=а²+в² Нам нужно найти СD - большая боковая сторона, гипотенуза прямоугольного треугольника с²= а²+в²= 21²+20²=441+400=841 с= с=29 см
Единственное, я не писала ответы и не называла стороны, на случай, если у тебя свои названия
По т.Пифагора АВ²=АС²+ВС²
АВ²-АС²=ВС²
Примем АС=а. Тогда гипотенуза АВ=а√2.
2а²-а²=36⇒
а=√36=6
a√2=6√2
АС=ВС - треугольник равнобедренный. В равнобедренном треугольнике высота, проведенная к основанию, совпадает с медианой.
В равнобедренном прямоугольном треугольнике высота из прямого угла=0,5 гипотенузы ( по свойству медианы из прямого угла).
СН =(6√2):2=3√2
Иногда эту высоту требуется записать в ответе как √2CH. Тогда, так как √2•3•√2=6, в ответе пишется 6.