Рассмотрим один из равных треугольников, разделённых высотой.
один катет = 48 (это высота)
второй катет обозначим 7x
гипотенузу обозначим 25x (это сторона большого треугольника)
уравнение: 625x² = 2304 + 49x² - по теореме Пифагора.
Решаем:
576x² = 2304
x² = 4
x = 2
отсюда гипотенуза маленького треугольника, она же сторона большого треугольника равна 2*25 = 50
катет маленького треугольника, он же 1/2 основания большого треугольника
3*7 = 21, а всё основание равно 21*2 = 42
Искомая площадь треугольника равна 42*48 / 2 = 1008 см²
Объяснение:
Рассмотрим один из равных треугольников, разделённых высотой.
один катет = 48 (это высота)
второй катет обозначим 7x
гипотенузу обозначим 25x (это сторона большого треугольника)
уравнение: 625x² = 2304 + 49x² - по теореме Пифагора.
Решаем:
576x² = 2304
x² = 4
x = 2
отсюда гипотенуза маленького треугольника, она же сторона большого треугольника равна 2*25 = 50
катет маленького треугольника, он же 1/2 основания большого треугольника
3*7 = 21, а всё основание равно 21*2 = 42
Искомая площадь треугольника равна 42*48 / 2 = 1008 см²
Объяснение:
Поделитесь своими знаниями, ответьте на вопрос:
Дан треугольник с вершинами в точках а(0; 1), в(2; 1), с(-2; 3 определите координаты вершин треугольника, симметричного данному треугольнику относительно: 1)начала координат; 2)оси оx; 3)оси оy
1) Если точки симметричны относительно начала координат, то они будут иметь противоположные координаты.
К(х; у) → К'(-х; -у)
Тогда координаты вершин треугольника, симметричного данному треугольнику относительно начала координат будут такие:
А(0; 1) → А'(0; -1)
В(2; 1) → В'(-2; -1)
С(-2; 3) → К'(2; -3)
2) Если точки симметричны относительно оси Ох, то они будут иметь равные абсциссы, но противоположные ординаты.
К(х; у) → К'(х; -у)
Тогда координаты вершин треугольника, симметричного данному треугольнику относительно оси Ох будут такие:
А(0; 1) → А'(0; -1)
В(2; 1) → В'(2; -1)
С(-2; 3) → К'(-2; -3)
3) Если точки симметричны относительно оси Оу, то они будут иметь противоположные абсциссы и равные ординаты.
К(х; у) → К'(-х; у)
Тогда координаты вершин треугольника, симметричного данному треугольнику относительно оси Оу будут такие:
А(0; 1) → А'(0; 1)
В(2; 1) → В'(-2; 1)
С(-2; 3) → К'(2; 3)