Дан прямоугольник abcd и перпендикуляр кв проведенный к плоскости прямоугольника через вершину в. наклонная кс=12см, сторона ав=5см. найдите длину наклонной кd.
Делаешь такой чертеж.проводишь линию кот . изображает человека. на некотором расстоянии от него проводишь другую линию повыше- это будет столб с фонарем.соединяешь и продолжаешь дальше где должна быть тень | примерно так. одна вертикальная || черточка - человек две вертикальные черточки - столб.теперь точки соединяешь у тебя получится треугольник.который состоит из двух подобных треугольников. высоту фонаря обозначим х. составляешь пропорцию 9 : 1.8 = ( 9+ 16 ) \ х х = 1.8 * 25 \ 9 = 5 метров высота фонаря
anton-www1
01.11.2020
Диагонали ромба взаимно перпендикулярны. AOD - прямоугольный треугольник. ОР - высота из прямого угла в треугольнике AOD. ОР=√(АР*РD)=√(6√3*2√3)=6см. По Пифагору АО=√(АР²+ОР²)=√(108+36)=12см. R=AJ=JO=JP = АО/2 = 6см. Площадь круга Sк=π*R²=36π. В прямоугольном треугольнике АРО катет ОР равен половине гипотенузы АО, значит <PAO=30°, <РАК=60° (так как АО - биссектриса <PAK) => дуга РОК=120°. <PJK=120°(центральный угол, опирающийся на дугу РОК). РН=0,5*АР=3√3см (катет против угла 30°). AH=√(АР²-РH²)=√(108-27)=9см. Площадь треугольника АКР равна Sapk=AH*PH=9*3√3=27√3см². Площадь сегмента КОР равна Skop=(R²/2)*(π*α/180 -Sinα) - формула. В нашем случае α=<PKJ =120°. Skop=(36/2)*(π*120/180 -√3/2) Skop=(12π-9√3)см². Искомая площадь равна S=Sк-Sapk-Skop = 36π-27√3-12π+9√3 = (24π-18√3)см².
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Дан прямоугольник abcd и перпендикуляр кв проведенный к плоскости прямоугольника через вершину в. наклонная кс=12см, сторона ав=5см. найдите длину наклонной кd.