Медианы точкой пересечения делятся в отношении 2 к 1 начиная от угла, из которого они построены Если длина вертикальной медианы А, наклонной B Рассмотрим прямоугольный треугольник, образованный частями медиан и половиной основания Обозначим половину основания как x По Пифагору x² = (2/3B)² - (1/3A)² = 1/9(4B² - A²) x = 1/3√(4B² - A²) Длина боковой стороны l² = x²+A² = 1/9(4B² - A²)+A² = 4/9(B² + 2A²) l = 2/3√(B² + 2A²) а теперь к нашим числам. 1) А=8 см, B=10 см x = 1/3√(4B² - A²) = 1/3√(4*100 - 64) = 4√(7/3) см l = 2/3√(B² + 2A²) = 2/3√(100 + 2*64) = 4√(19/3) см С требуемыми 12-ю см не совпадает 2) А=10 см, B=8 см x = 1/3√(4B² - A²) = 1/3√(4*64 - 100) = 2√(13/3) см l = 2/3√(B² + 2A²) = 2/3√(64 + 2*100) = 4√(22/3) см Снова не 12! ответ При данных длинах медиан боковая сторона 12 равняться не может
artemyanovich8
29.09.2022
3 см Так как треугольник равносторонний, то все его стороны равны. АВ=ВС=АС=2√3Биссектриса в равностороннем треугольнике является медианой и высотой. Медиана ВН (она же биссектриса, она же высота) делит треугольник АВС на два треугольника. B AHC Рассмотрим треугольник АВН: Т. к ВН-биссектриса, то угол АВН=30° (т. к в равностороннем треугольнике все углы равны 60°).Треугольник АВН - прямоугольный (т. к ВН еще и высота). По св-ву прямоугольного треугольника, один из углов которого равен 30°:АВ - гипотенуза треугольника АВН. АН - катет, лежащий против угла в 30°.Значит, АН=1/2*АВАН=1/2*2√3АН=√3Теперь, по теореме Пифагора найдем сторону ВН. АВ2=ВН2+АН2(2√3)2=х2+(√3)2(√12)2=х2+312=х2+3 ==> х2=9 х=3ВН=3 см. ответ: ВН=3 см
katyn76
29.09.2022
Смотрим образовавшийся прямоугольный (т.к. медиана в равностороннем треугольнике является и высотой, и биссектрисой) треугольник: Т.к. она является и биссектрисой, то угол поделится пополам, т.е. будет равен = 30. Дальше воспользуемся тригонометрией, а именно косинусом (напомню, косинус - отношение прилежащего катета к гипотенузе): cos 30=√3/2 √3/2=9√3/x √3х=18√3 х=18 (см) - сторона треугольника. Если есть желание, можешь расковырять через теорему Пифагора, обозначив второй катет за х, а гипотенузу за 2х. ответ получится абсолютно тот же.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
20б в равнобедренном треугольнике две медианы равны 8 и 10 см. может ли его боковая сторона быть равной 12 см? ответ объясните
Если длина вертикальной медианы А, наклонной B
Рассмотрим прямоугольный треугольник, образованный частями медиан и половиной основания
Обозначим половину основания как x
По Пифагору
x² = (2/3B)² - (1/3A)² = 1/9(4B² - A²)
x = 1/3√(4B² - A²)
Длина боковой стороны
l² = x²+A² = 1/9(4B² - A²)+A² = 4/9(B² + 2A²)
l = 2/3√(B² + 2A²)
а теперь к нашим числам.
1) А=8 см, B=10 см
x = 1/3√(4B² - A²) = 1/3√(4*100 - 64) = 4√(7/3) см
l = 2/3√(B² + 2A²) = 2/3√(100 + 2*64) = 4√(19/3) см
С требуемыми 12-ю см не совпадает
2) А=10 см, B=8 см
x = 1/3√(4B² - A²) = 1/3√(4*64 - 100) = 2√(13/3) см
l = 2/3√(B² + 2A²) = 2/3√(64 + 2*100) = 4√(22/3) см
Снова не 12!
ответ
При данных длинах медиан боковая сторона 12 равняться не может