Объяснение:
1. вариант решения.
Максимальнo возможный объём будет у правильной призмы. Объём правильной призмы можно вычислить по формуле V=a2⋅3√4⋅H
Так как доступны шесть отрезков каждого вида, то сторона основания правильной призмы не может быть равна боковому ребру.
Очевидно, что a>b>0⇒a2⋅b>b2⋅a.
Соответственно, максимальнo возможный объём будет, если длина стороны основания правильной призмы будет равна длине наибольшего отрезка, а длина высоты призмы будет равна длине второго по величине отрезка.
Максимальный возможный объём призмы будет равен V(max)=102⋅3√4⋅8≈346,41см3
2. Вариант решения
Метод полного перебора.
Используя данные отрезки, треугольную прямую призму можно конструировать
Стороны основания равны 5см; 5см; 5см;
боковое ребро равно 8см; площадь основания равна 32⋅3√4см2; объём призмы равен 32⋅3√4⋅8≈74,45см3.
Подобным образом нужно рассмотреть остальные четырнадцать вариантов. Рассмотрев и сравнив полученные результаты, можно легко заметить, что максимально возможному объему соответствует призма со сторонами основания 10 см; 10 см; 10 см и высотой 8 см.
Максимальный возможный объём призмы будет равен V(max)=102⋅3√4⋅8≈346,41см3
ответ: ниже
Объяснение: На фото рисунок и используемые теоремы (синусов и косинусов)
Чтобы найти сторону ВС, воспользуемся второй
cos110º= -0,342
BC=√(АС²+ВA²-2*AC*BA*cosA)=
=√(10²+6²+2*10*6*0,342)=
=√(100+36+41,04)=√(100+36+41,04)=13,3 (округлено)
sin110º=0,94
По теореме синусов находим синус одного из неизвестных углов
AC/sinB=BC/sin110º
sinB=AC*sin110º/BC=
=10*0,94/13,3= 0,707 округлено => <В=45º приблизительно
Зная, что сумма всех углов треугольника равна 180º, сожем найти и третий угол
<С=180º-110º-45º=25º
Поделитесь своими знаниями, ответьте на вопрос:
50 в правильной треугольной призме радиус описанного вокруг основания окружности равен 4√3 см. вычислите высоту призмы, если диагональ боковой грани равна 13 см.