катет AC - диагональ основания призмы, найти по теореме Пифагора:
AC₁²=CC₁²+AC²
10²=4²+AC², AC²=84, AC=√84. √84=√(4·21)=2·√21
AC=2√21 см
2. ΔBDD₁:
<BDD₁=90°
гипотенуза BD₁=16 см - диагональ призмы
катет DD₁=4 см - высота призмы
катет BD- диагональ основания призмы, найти по теореме Пифагора:
BD₁²=DD₁²+BD²
16²=4²+BD², BD²=240, BD=√240. √240=√(16·15)=4·√15
BD=4·√15 см
3. ΔAOD:
<AOD=90°(диагонали ромба перпендикулярны)
катет AO=AC/2, AO=√21 см (диагонали ромба в точке пересечения делятся пополам)
катет OD=BD/2, OD=2√15 см
гипотенуза AD - сторона ромба, найти по теореме Пифагора:
AD²=AO²+OD²
AD²=(√21)²+(2√15)², AD²=81
AD=9 см
ответ сторона ромба 9 см
Vladimirovna Viktorovna
28.03.2023
Найдем сторону квадрата через его периметр. Периметр квадрата равен Р=4а; 6,6=4а; а=1,65 дм. Диагональ квадрата является диаметром описанной окружности, а она в корень из 2 больше его стороны,значит диагональ равна 1,65 корень из 2. Найдем радиус. Радиус в 2 раза меньше диаметра,т.е.1,65sqrt2:2=0,825sqrt2. Обозначим сторону шестиугольника с. Тогда по формуле радиуса описанной окружности возле правильного шестиугольника равна R=с/(2sin180/6); 0,825sqrt2=c/2sin30; 0,825sqrt2=c/2*1/2; c=0,825sqrt2. Теперь найдем периметр шестиугольника,т.к. шестиугольник правильный,то у него все стороны равны,тогда Р=6с; Р=6*0,825sqrt2=4,95sqrt2 дм
ok-49566
28.03.2023
1)в ромбе все стороны равны. точка пересечения диагоналей делит их пополам. рассмотрим один из прямоугольных треугольников, которые составляют ромб. гипотенуза =17 см(сторона ромба) катет равен 0,5*30(половина диагонали)=15по теореме Пифагора 17*17=а*а+15*15 > а*а=289-225=64 >а=8вторая диагональ равна 8*2=16. 2) ABCD - ромбBD=30 смЗначит BO=DO=15 см ( О - точка пересечения диагоналей)Рассмотрим треугольник AOB - прямоугольныйAB^2=BO^2+AO^2 - по теор ПифагораAO^2= 289-225AO=8 смЗначит AC=16 см.Всё))) Какая понятней но это одна и таже задача.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Основою прямой призми, диагонали которой доривнюють 10см и 16см, е ромб.найдите сторону основи призми, если её висота доривнюе 4см
ответ: 9 см
Объяснение:
дано: ABCDA₁B₁C₁D₁ - прямая призма, ABCD - ромб. AC₁=10 см, BD₁=16 см, H=4 см
найти: АD
решение.
ABCDA₁B₁C₁D₁ - прямая призма, => боковые грани призмы прямоугольники (боковые ребра _|_ основанию)
1. ΔACC₁:
<ACC₁=90°
гипотенуза AC₁=10 см - диагональ призмы
катет CC₁=4 см - высота призмы
катет AC - диагональ основания призмы, найти по теореме Пифагора:
AC₁²=CC₁²+AC²
10²=4²+AC², AC²=84, AC=√84. √84=√(4·21)=2·√21
AC=2√21 см
2. ΔBDD₁:
<BDD₁=90°
гипотенуза BD₁=16 см - диагональ призмы
катет DD₁=4 см - высота призмы
катет BD- диагональ основания призмы, найти по теореме Пифагора:
BD₁²=DD₁²+BD²
16²=4²+BD², BD²=240, BD=√240. √240=√(16·15)=4·√15
BD=4·√15 см
3. ΔAOD:
<AOD=90°(диагонали ромба перпендикулярны)
катет AO=AC/2, AO=√21 см (диагонали ромба в точке пересечения делятся пополам)
катет OD=BD/2, OD=2√15 см
гипотенуза AD - сторона ромба, найти по теореме Пифагора:
AD²=AO²+OD²
AD²=(√21)²+(2√15)², AD²=81
AD=9 см
ответ сторона ромба 9 см