Рассмотрим треугольники АВО и СВО: 1) ВО - общая; 2) АОВ и СОВ - равны по определению; 3) АО и СС - равны по определению. Отсюда треугольники АВО и СВО равны. Следовательно, угол CBA равен 36 + 36 = 72 градуса
bg1967bg
04.09.2022
1)Треугольник АВС, АВ=25, ВС=29, АС=36, высоты ВН, АМ, СТ, вершина угол В cosВ = (АВ в квадрате + ВС в квадрате - АС в квадрате) / 2 х АВ х ВС= = (625 +841 - 1296) / (2 х 25 х 29) =0,1172 - угол 83 =уголВ , sin 83 (В)= 0,9925 АС/sinВ = АВ/sinС, 36/0,9925=25/sinС, sinС = 0,6892 АС/sinВ = ВС/sinА, 36/0,9925=29/sinА, sinА = 0,7995 ВН = АВ х sinА = 25 х 0,7995 =20 СТ = АС х sinА = 36 х 0,7995 = 28,8 АМ = Ас х sinС = 36 х 0,6892 = 24,8 Найменьшая высота проведена на большую сторону АС
Если найдена одна высота остальные можно искать через отношение ha : hb = (1/a) : (1/b)
sgritsaev
04.09.2022
Построим сумму векторов а и b и их разность. ↑АС = ↑р = ↑а + ↑b ↑DB = ↑q = ↑a - ↑b Чтобы найти угол между векторами p и q, построим вектор, равный вектору q, с началом в точке А. ∠ЕАС - искомый. Из ΔABD найдем длину вектора q по теореме косинусов: |↑q|² = AB² + AD² - 2·AB·AD·cos60° = 25 + 64 - 2·5·8·1/2 = 89 - 40 = 49 |↑q| = 7 Сумма углов параллелограмма, прилежащих к одной стороне, равна 180°, значит ∠АВС = 120°. Из ΔABС найдем длину вектора р по теореме косинусов: |↑p|² = AB² + BC² - 2·AB·BC·cos120° = 25 + 64 + 2·5·8·1/2 = 89 + 40 = 129 |↑p| = √129
Из ΔЕАС по теореме косинусов: cos α = (AE² + AC² - EC²) / (2 · AE · AC) cos α = (49 + 129 - 256) / (2 · 7 · √129) = - 78 / (14√129) = - 39√129 / 903 cos α = - 13√129/301
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Внутри треугольника abc взята точка o, причём угол boc= углу boa, ao=oc, угол abo=36°. чему равен угол
1) ВО - общая;
2) АОВ и СОВ - равны по определению;
3) АО и СС - равны по определению.
Отсюда треугольники АВО и СВО равны. Следовательно, угол CBA равен 36 + 36 = 72 градуса