jardi
?>

Найдите угол между биссектрисой ам и медианой ад прямоугольного треугольника авс с прямым углом а и углом в, равным 28 градусов. и рисунок !

Геометрия

Ответы

OlgaVasilevna

Медиана прямоугольного треугольника равна половине гипотенузы. 

АD=BD=СD ⇒  ∆ ADB - равнобедренный. ∠DAB=∠DBA=28°

АМ - биссектриса. ⇒ ∠МАВ=45° 

∠DAM=∠MAD-∠BAD=45°-28°=17°


Найдите угол между биссектрисой ам и медианой ад прямоугольного треугольника авс с прямым углом а и
Владимирович_Намик59
AB =16 ; ∠A =30° ; ∠B =105° .

1) BC -?
2) (меньшая сторона) -?

1) AB/sin∠C =BC/sinA   =  AC/sin∠B  = 2R (теорема синусов).
∠C =180° -(∠A +∠B )= 180° -(30° +105°) =45°.
16/sin45° =BC/sin30°⇒
BC =15*(sin30°/sin45°) =16*(1/2) / (1/√2) =(16√2)/2 =8√2≈11,28 (см).
---
2) меньшая сторона та, которая лежит против меньшего угла , 
эта сторона BC(лежит против меньшего угла ∠A=30°).  
 
длину  AC  не требуется , но :
AC /sin∠B = AB/sin∠C ⇒AC =AB*sin(∠B)/(sin∠C)=
16* sin105°/(1/√2) =16√2sin105°=16√2*√2(√3 +1)/4 =8(√3 +1) .

sin105° =sin(180°-75°) =sin75°=sin(45°+30°) =...
или 
sin105° =sin(60°+45°) =sin60°*cos45°+cos60°*sin45°=
(√3/2)*(√2/2)+(1/2)*(√2/2) =√2(√3 +1)/4.

* * * * * * *    Второй
∠C =180° -(∠A+∠B) =180° -(30°+105°) =45°.
Проведем высоту  BH⊥AC (∠AHB=90°) ⇒  Прямоугольный треугольник BHC  равнобедренный CH =BH ,т.к.  ∠C =45°.
По теореме Пифагора из ΔBHC:
BC =√ (BH² +CH²) =√(2BH²) =BH√2 . Но из ΔABH  BH=AB/2 =8(как катет против угла
∠A =30°). Значит BC =BH√2 =8√2.
Bogdanov
Может, решение громоздкое получилось, но другое как-то не придумалось  
Через подобные треугольники и формулу хорды. 
Из точки М опускаем перпендикуляр на сторону АС, точку пересечения обозначим через Р. Треугольник АМР подобен треугольнику АВС, откуда АР/АС=АМ/АВ=9/25. Отсюда находим АР=27/25 см. 
Теперь обозначаем через О середину стороны АС (т. е. центр окружности) и рассматриваем треугольник ОМР с прямым углом Р. Находим для этого треугольника угол О через его косинус: 
ОР=АО-АР=ОМ*cosO, отсюда cosO=7/25. 
Теперь найдём хорду АМ, по формуле хорды АМ=2*ОМ*sin(O/2). По формулам приведения sin(O/2)=sqrt((1-cosO)/2)=3/5, поэтому получаем АМ=1,8 см. По пропорции АМ/АВ=9/25 получаем АВ=5 см. По теореме Пифагора ВС=4 см, тогда искомая площадь треугольника равна АС*ВС/2=6 см кв.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Найдите угол между биссектрисой ам и медианой ад прямоугольного треугольника авс с прямым углом а и углом в, равным 28 градусов. и рисунок !
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

valerii_Georgievna915
Goldglobe
Kharkina1328
puma802
annapiskun1
Иванина
zeltos384
mamaevmvv3
parolmm
ngz55
АртакСергеевич1723
maximovpavel9114
msk27
kate1610
jaksonj326