Васильев1028
?>

Даны три треугольные стенки: bs = 2, as = 3, ab = 4. найдите косинус углов a, b, c.

Геометрия

Ответы

Richbro7

1) 

Радиус вписанной окружности правильного многоугольника совпадает с его апофемой (т.е. перпендикуляром, опущенным из центра на любую сторону) 

Правильный шестиугольник можно разделить на 6 правильных треугольников. Его площадь равна площади 6 таких треугольников и  S(шестиугольника)=6•S (треуг) 

Нам известен радиус вписанной в шестиугольник окружности, т.е. высота правильного треугольника АОВ (см. рисунок). Для нахождения площади правильного треугольника воспользуемся формулой 

S= \frac{h^2}{ \sqrt{3} }

Тогда S _{6} = \frac{6* 3^{2} }{ \sqrt{3} }18 \sqrt{3} дм²

––––––––––

2)

По условию 2 \pi r_{1}-2 \pi r _{2} =2 \pi R

Примем коэффициент отношения радиусов окружностей равным а. Тогда радиус первой равен 5а, второй –3а

5a-3a=40⇒

a=20 см

r1=100 см=1м

S1=π•1²=π м²

60 см=0,6 м 

S2=π•(0,6)²=0,36 м²

–––––––––––

3)

 Найдите площадь сегмента круга, радиуса 4 см, если его хорда равна 4√2 см

Пусть центр круга О, хорда - АВ. 

АО=ВО ⇒∆ АОВ - равнобедренный

По т.косинусов АВ²=АО²+ВО²- 2АО•ВО•cos∠AOB

32=2•16-2•16•cosAOB⇒

cos AOB=0, ⇒ ∠АОВ=90°. 

Площадь искомого сегмента равна разности площадей сектора с углом 90° и прямоугольного ∆ АОВ. 

Градусная мера полного круга 360°, значит, площадь сектора с углом 90°=1/4 площади круга 

S сектора=16π:4=4π

S ∆ АОВ=4•4:2=4•2

S сегм=4π-4•2=4(π-2)= ≈4,566 см²

4)

Отношения отрезков сторон треугольника АВС, на которые их делят данные точки,  одинаковы.

 Примем коэффициент отношения отрезков сторон равным а. 

Тогда АВ=7а. 

Треугольники у вершин подобны треугольнику АВС, т.к. имеют общую вершину и  стороны исходного треугольника пропорциональны сторонам треугольников, «отсекаемых» от него у вершин, с коэффициентом подобия 7:2, Поэтому эти отсекаемые треугольники равновелики. 

 Отношение площадей подобных треугольников равно квадрату коэффициента подобия. 

k=АВ:ВК=7:2 ⇒

S (ABC):S(BKM)=k²= 49/4

 245:S(BKM)=49:4⇒

S(Δ BKM)=20

S(ТКМОНР)=245-3•20=185 мм²


Надо 1. найдите площадь правильного шестиугольника, описанного около окружности, радиус которой раве
Inozemtseva Korolev1271
А5. На рисунке изображены векторы. Вектор, равный век тору 3 overline a , будет вектор:

a) b;

B)

г) п.

a

+

m

А6. Отрезок МN является средней линией треугольника ABC. Число k, для которого vec AB =k* vec MA , равно:

а) 2,

6) -2;

1 2 ;

r)- 1 2 .

A7. ABCD параллелограмм, O - roq пересечения его диагоналей. Тогда верным будет равенство:

a) vec AO - vec OD = vec AD

6)

vec AO - vec BO = vec AD

;

B) vec AB + vec BO = vec AO ;

г) vec AB + vec BO = vec AC .

. А8. В четырехугольнике АBCD vec AB = vec DC точка K-* cepe дина AD. Прямая СК пересекает прямую ВА в точке N. Среди указанных пар векторов не являются коллинеар ными векторы:

a) vec AD u vec NK

б) vec AK u vec BC ;

в) vec AK u vec DA ;

г) vec BN H vec DC

B

M

C

A

N
Решите это пжА5. На рисунке изображены векторы. Вектор, равный век тору 3 overline a , будет векто
Решите это пжА5. На рисунке изображены векторы. Вектор, равный век тору 3 overline a , будет векто
Все ответы

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Даны три треугольные стенки: bs = 2, as = 3, ab = 4. найдите косинус углов a, b, c.
Ваше имя (никнейм)*
Email*
Комментарий*