Решение: 1)Пусть в одной части х см, тогда по условию задачи длина одного из катетов равна 4х см, а длина второго равна 3х см. 2)Площадь прямоугольного треугольника равна половине произведения катетов, тогда S=·4x·3x S=24 см², тогда ·4x·3x=24 ·12x²=24 6x²=24 x²=24:6 x²=4 x=2 Получили, что в одной части 2 см, тогда длина большего катета равна 4·2=8(см), длина меньшего катета равна 3·2=6(см). ответ: 8 см, 6 см.
Овезова Игорь
28.05.2020
Нет, ни шестиугольник, ни семиугольник не могут быть гранями правильного многогранника . ими могут быть правильные треугольники, квадраты, либо пятиугольники. других вариантов нет дело в том, что угол правильного n-угольника ( n≥6 ) меньше 120° но при каждой вершине должно быть не меньше 3 плоских углов и если бы такой правильный многогранник при n≥6 существовал, то сумма плоских углов при каждой вершине была ≥3•120°=360° но этого не может быть, потому как сумма всех плоских углов выпуклого многогранника при каждой вершине < 360°
Eduardovich
28.05.2020
Нет, ни шестиугольник, ни семиугольник не могут быть гранями правильного многогранника . ими могут быть правильные треугольники, квадраты, либо пятиугольники. других вариантов нет дело в том, что угол правильного n-угольника ( n≥6 ) меньше 120° но при каждой вершине должно быть не меньше 3 плоских углов и если бы такой правильный многогранник при n≥6 существовал, то сумма плоских углов при каждой вершине была ≥3•120°=360° но этого не может быть, потому как сумма всех плоских углов выпуклого многогранника при каждой вершине < 360°
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Вычислите длины катетов прямоугольного треугольника если они относятся как 4 к трем а его площадь равна 24 см квадратных
1)Пусть в одной части х см, тогда по условию задачи длина одного из катетов равна 4х см, а длина второго равна 3х см.
2)Площадь прямоугольного треугольника равна половине произведения катетов, тогда
S=·4x·3x
S=24 см², тогда ·4x·3x=24
·12x²=24
6x²=24
x²=24:6
x²=4
x=2
Получили, что в одной части 2 см, тогда длина большего катета равна 4·2=8(см), длина меньшего катета равна 3·2=6(см).
ответ: 8 см, 6 см.