Чертим прямую р.
На прямой р ставим произвольно т А.
Если графически задан образец отрезка (если задана сторона-см. условие), то берем радиус окружности, равный отрезку, ставим иглу циркуля в т. А и делаем отметку на прямой р заданной длины. Это т. В.
Построим угол А будущего треугольника АВС прямым.
Для этого из т. А в обе стороны на прямой р делаем отметины циркулем произвольного радиуса, отмечаем точки А1 и А2. А1 и А2 равноудалены от т. А.
Теперь чертим окружность с центром в т. А1, радиусом чуть бОльшим, чем АА1. Не изменяя радиус, чертим окружность с центром в т. А2.
Эти окружности пересекутся в 2 точках, через них нужно провести прямую с.
По построению с⊥р.
Далее построим угол 60°в т. В.
Для этого чертим произвольную окружность с центром в т. В.
Выберем точку (одну из двух) пересечения этой окружности с прямой р, расположенную ближе к т. А. Обозначим т. В1.
Не меняя радиуса, построим окружность с центром в т. В1
Через одну из точек пересечения этих окружностей и т. В проведем прямую а.
Пересечение прямых а и с дадут т. С-искомую вершину треугольника АВС.
* * * * * * * * * * * * * * * * * * * * * * * * * *
В равнобедренной трапеции диагональ является биссектрисой. Найдите площадь трапеции, если боковая сторона - 25 см, основание 39 см
ответ: 768 см².
Объяснение: Пусть ABCD равнобедренная трапеция
AD и BC основания трапеции ( AD || BC ) AD =39 см ,
ВA = CD =25 см и ∠ BAC = ∠ DAC .
S(ABCD) = h*(AD+BC)/2 -?
--------------------------------------
∠ BCA= ∠ DAC как накрест лежащие углы ( BC || AD , CA секущая) ,
следовательно ∠ BCA= ∠ DAC =∠ BAC , т.е. ΔBAC равнобедренный
BA = BC =25 см получили BA = CD =25 см .
Проведем BB₁ ⊥ AD и CC₁ ⊥ AD . BCC₁B₁ _прямоугольник BB₁ =CC₁
B₁C₁ = BC =25 см ; Δ BB₁A = Δ CC₁D(гипотен. BA= CD и катеты BB₁ =CC₁).
AB₁ =(AD - BC)/2 =(39 - 25)/2 см=7 см .
Из Δ BB₁A по теореме Пифагора:
BB₁ =√(BA² -AB₁² ) =√(25² -7)² =√(625 -49) =√576=24 (см) .
* * * h=√(25²-7)² =√(25 -7)(25 +7) =√(18*32) √(9*2*16*2)=3*2*4=24 * * *
S(ABCD) = h*(AD+BC)/2 =24(39+25)/2 =24*32 = 768 (см²).
Поделитесь своими знаниями, ответьте на вопрос:
)если площади двух ромбов равны, то эти ромбы равны друг другу. верно или не верно?
Да верно
Ты прав