delta88
?>

Периметр правильного треугольника, вписан в окружность , равен 24π см. найти площадь сегмента, основой которого есть сторона треугольника

Геометрия

Ответы

Yuliya701
Сторона треугольника равна 24π/3 = 8π см
Рассмотрим красный прямоугольный треугольник на рисунке
Половина этой стороны - катет, длина его 4π см
второй катет - радиус вписанной окружности r, лежит против угла в 30 градусов и его длина в 2 раза короче гипотенузы
Гипотенуза является радиусом описанной окружности R
По Пифагору
(4π)² + r² = (2r)²
16π² = 3r²
r² = 16/3*π²
r = 4π/√3 см
R = 2r = 8π/√3 см
угол при вершине сегмента β=120°
Площадь сектора S₁ (синяя штриховка на рисунке)
S₁ = πR²*β/360° = π*(8π/√3)²*120°/360° = π*64π²/3*(1/3) = 64/9*π³ ≈ 220,4893 см²
Площадь сегмента S₂ (малиновая штриховка на рисунке)
S₁ = πR²*β/360°-1/2*R²*sin(β) = π(8π/√3)² *120°/360°-(8π/√3)²/2*√3/2 = 64π²/3*(π/3 - √3/4) ≈ 129,3177 см²

Периметр правильного треугольника, вписан в окружность , равен 24π см. найти площадь сегмента, основ
uisfbu7777733
В основании параллелепипеда, параллелограмме a=3 см, b=8 см, ∠α=60°, d - меньшая диагональ основания.
В параллелограмме меньшая диагональ лежит напротив меньшего угла. В параллелограмме пара острых и пара тупых углов. ∠60° острый, значит d лежит напротив него.
Площадь боковой поверхности: Sб=P·h=2(a+b)·h, где h - высота параллелепипеда.
h=Sб/(2(a+b))=286/(2(3+8))=13 см.
По теореме косинусов d²=a²+b²-2ab·cos60=3²+8²-2·3·8/2=49,
d=7 см.
Диагональное сечение прямого параллелепипеда - это прямоугольник, образованный диагоналями основания и боковыми рёбрами.
Площадь диагонального сечения: 
Sд=d·h=7·13=91 см² - это ответ. 
kgrechin
Дано:а параллельна b ,Доказать:все точки каждой из двух параллельных прямых равноудалены от другой прямой.Доказательство:Проведем перпендикуляры из точек М и К.Прямая МN перпендикулярна прямой b и КL перпендикулярна прямой b.Перпендикуляры равны(так как прямые параллельны)Таким образом если из каждой точки на любой прямой провести перпендикуляр к другой прямой,то все перпендикуляры этих параллельных прямых равны и эти параллельные прямые равноудалены друг от друга как и все их точки,что и требовалось доказать

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Периметр правильного треугольника, вписан в окружность , равен 24π см. найти площадь сегмента, основой которого есть сторона треугольника
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

kizyaev6651
Irina
Vlad Petr531
ss2911
dimari81
tvshi
fucingprinces30
Manyaya
xsmall1
os2854
colus77
naromanova
petrowich076813
mira15963256
Газинурович