Есть формула длины хорды: L=2*R*Sin(α/2), где α - центральный угол, а R - радиус окружности. В нашем случае это радиус описанной вокруг треугольника АВС окружности. Угол САN - вписанный угол и равен 45°, (так как <CAN=<BAC - <BAM = 75°-30°=45°), значит центральный угол CON равен 90°, а его половина равна 45°. Найдем радиус: R=AC/(2*Sin45°) = √2/2*(√2/2) = 1. Зная радиус окружности, найдем величину половины центрального угла АОВ, а, следовательно, величину вписанного угла АСВ . Он равен arcsin(α/2)=AB/(2*R) = √3/2. То есть угол АСВ равен = 60°. Но угол ВСN равен 30°, как вписанный угол, опирающийся на ту же дугу, что и вписанный угол ВАN. Значит угол АСN = <ACB+<BCN = 60°+30°=90°. Итак, угол АСN прямой, значит АN - диаметр и равен 2*R = 2. ответ: длина АN = 2.
rudakovam198
25.04.2022
Есть формула длины хорды: L=2*R*Sin(α/2), где α - центральный угол, а R - радиус окружности. В нашем случае это радиус описанной вокруг треугольника АВС окружности. Угол САN - вписанный угол и равен 45°, (так как <CAN=<BAC - <BAM = 75°-30°=45°), значит центральный угол CON равен 90°, а его половина равна 45°. Найдем радиус: R=AC/(2*Sin45°) = √2/2*(√2/2) = 1. Зная радиус окружности, найдем величину половины центрального угла АОВ, а, следовательно, величину вписанного угла АСВ . Он равен arcsin(α/2)=AB/(2*R) = √3/2. То есть угол АСВ равен = 60°. Но угол ВСN равен 30°, как вписанный угол, опирающийся на ту же дугу, что и вписанный угол ВАN. Значит угол АСN = <ACB+<BCN = 60°+30°=90°. Итак, угол АСN прямой, значит АN - диаметр и равен 2*R = 2. ответ: длина АN = 2.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Втреугольнике mtk проведена биссектриса kc. найдите угол m, если угол t равен 26 градусам, угол kct равен 98 градусам
∠СКМ=∠СКТ=56°
∠К=56+56=112°
∠М=180-26-112=42°
ответ: 42°