annino
?>

На прямой даны точки a, b, c и d. точка d лежит между точками b и c известно, что dc=4, 2см, bd=2, 4см иbc=3, 3см. отрезок ab в два раза длинее отрезка dc. найдите длину отрезка ac.​

Геометрия

Ответы

Nastyakarysheva8750

 

Построение сечения: Назовем искомую плоскость MNK \alpha. Плоскости ABC и A1B1C1 параллельны и пересечены плоскостью  \alpha, следовательно, линии пересечения параллельны. Значит,  \alpha пересекает А1В1С1 по прямой КF, параллельной MN. Значит, F - середина А1В1. Осталось соединить KF, FM, MN, NK. Искомое сечение - FKNM.

 

 

Доказательство: В треугольнике ABD MN-средняя линия, MN || BD. Т.к MN лежит в плоскости сечения MNK, а BD параллельна прямой MN, лежащей в плоскости сечения, ВD параллельна плоскости MNK, что и требовалось доказать.

 

 

 

 


Дан куб abcda1b1c1d1.построить сечение,проодящее через точки м- середину ребра ав и n-середину ребра
smnra219

1)Это прямоугольные треугольники,с любыми сторонами, но прямоугольные.

2)Площадь прямоугольника равна произведению его смежных сторон, или произведению длины на ширину.

3) 1.Равные многоугольники имеют равные площади  

   2.Если многоугольник составлен из нескольких многоугольников, то   его площадь равна сумме площадей этих многоугольников .  

  3.Площадь квадрата равна квадрату его стороны

4)Площадь параллелограмма равна произведению длины одной из его сторон на высоту, опущенную на эту сторону Площадь параллелограмма равна произведению двух его смежных сторон на синус угла между ними Площадь параллелограмма равна половине произведения его диагоналей на синус угла между ними.

5)Много вариантов есть, так как площадь многоугольников может и делиться, и уменьшаться, и увеличиваться.

6)Площадь треугольника равна половине произведения его сторон на синус угла между ними.

7)Площадь прямоугольного треугольника равняется половине произведения катетов. Дан прямоугольный треугольник с катетами a = 8 см, b = 6 см. Также в прямоугольном треугольнике применяется теорема Пифагора. – сумма квадратов двух катетов равняется квадрату гипотенузы.

8)Площадь трапеции равна произведению полусуммы оснований на высоту. Доказательство. Проведя в трапеции ABCD (рис.1) диагональ DB, можно рассматривать ее площадь S как сумму площадей двух треугольников BCD и ADB.

9)Если угол одного треугольника равен углу другого треугольника, то отношение площадей этих треугольников равно отношению произведений сторон, заключающих равные углы.

10)Квадрат гипотенузы прямоугольного треугольника равен сумме квадратов катетов.

11)Отношение площадей треугольников, имеющих равную высоту, равно отношению их оснований.

12)Если квадрат одной стороны треугольника равен сумме квадратов двух других сторон, то треугольник прямоугольный.

13)1. Площадь ромба равна произведению стороны на высоту, проведенную к этой стороне (S=ah)

2. Если известна сторона ромба (у ромба все стороны равны) и угол между сторонами, то площадь можно найти по следующей формуле(S=a2 sin a)

3. Площадь ромба также равна полупроизведению диагоналей

4. Если известен радиус r окружности, вписанной в ромб  и сторона ромба a, то его площадь вычисляется по формуле.

14)Площадь прямоугольного треугольника равняется половине произведения катетов. Дан прямоугольный треугольник с катетами a = 8 см, b = 6 см. Также в прямоугольном треугольнике применяется теорема Пифагора. – сумма квадратов двух катетов равняется квадрату гипотенузы.

15)Если высоты двух треугольников равны, то их площади относятся как основания. И Если высоты двух треугольников равны, то их площади относятся как основания

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

На прямой даны точки a, b, c и d. точка d лежит между точками b и c известно, что dc=4, 2см, bd=2, 4см иbc=3, 3см. отрезок ab в два раза длинее отрезка dc. найдите длину отрезка ac.​
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

A2017
victoria-112296363
Tsevich333639
Корнеплодович1930
alexandr25901
dmitrij-sp7
АннаМаргарита
qelmar461
Tochkamail370
dannytr
mihalevskayat
darialyagina
Elshel8694
morozova
Vladimirovich351