Диагонали трапеции «высекают» в ней подобные треугольники. ∆ВОС~∆ АОД по равным углам: углы при основаниях равны как накрестлежащие; при точке О - как вертикальные. k=АО:ОС=3. Отношение площадей подобных фигур равно квадрату коэффициента их подобия. ⇒ Ѕ(АОД):Ѕ(ВОС)=3²=9 ⇒ Ѕ(АОД)=36•9=324.
Высота в ∆ АВО и ВОС общая. Отношение площадей треугольников с равными высотами равно отношению сторон, к которым высоты проведены. Ѕ(АВО)=3Ѕ(ВСО)=36•3)=108 Аналогично Ѕ(СОД)=3Ѕ(ВОС)=108. (попутно заметим, что площади треугольников, образованных частями диагоналей и боковыми сторонами трапеции всегда равны именно по этому свойству). Площадь трапеции АВСД равна сумме площадей четырех треугольников. S(АВСД)=36+324+2•108=576 ( ед. площади)
Поделитесь своими знаниями, ответьте на вопрос:
20 в квадрат со стороной 8 вписана окружность найдите ее длину с и длину дуги
2r= 8
r= 4
C= 2πr= 8π
ответ : Длина окружности =8π .
а какая дуга . уточните в комментариях