Пирамида правильная, значит в основании квадрат и боковые ребра равны между собой и равны L. Высота проецируется в центр основания - точку пересечения диагоналей квадрата - О.
SO - высота пирамиды, ∠CSD = α - плоский угол при вершине.
Если конус вписан в пирамиду, то его высота совпадает с высотой пирамиды, а основание - круг, вписанный в основание пирамиды.
ΔCSD: по теореме косинусов
CD² = CS² + DS² - 2CS·DS·cosα = L² + L² - 2·L·L·cosα = 2L²·(1 - cosα)
CD = L√(2(1 - cosα))
Радиус круга, вписанного в квадрат, равен половине стороны квадрата:
r = CD/2 = L√(2(1 - cosα)) / 2 - радиус основания конуса.
CO = AC/2 = CD√2/2 = 2L√(1 - cosα)/4 = L√(1 - cosα)
Из треугольника COS по теореме Пифагора
SO = √(SC² - OC²) = √(L² - L²(1 - cosα)) = L√cosα
Vц = 1/3 · πr² · SO = 1/3 · π ·L²(2(1 - cosα))/4 · L√cosα = πL³ (1 - cosα)√cosα/6
Воспользуемся формулой синуса половинного угла: 2sin²(α/2) = 1 - cosα:
Vц = πL³sin²(α/2)√cosα / 3
Объяснение:
ответ:
v = 5√3/6 ед³.
sбок = 144 ед².
объяснение:
судя по тому, что ∠авс= 120°, параллелепипед не прямоугольный, а прямой. это "две большие разницы".
итак, высота параллелепипеда равна 9см, а в основании прямого параллелепипеда лежит параллелограмм со стороной вс = 5 см, диагональю ас=7см и углом авс = 120°. по теореме косинусов попробуем найти сторону ав.
ас² =ав²+вс² - 2·ав·вс·cos120. cos120 = -cos60 = - 1/2.
49 = ab²+25 - 2·ab·5·(-1/2) =>
ав²+5·ав -24 =0 => ab = 3cм
so = ab·bc·sin120 = 3·5·√3/2.
v = so·h = (3·5·√3/2)·9 = 5√3/6 ед³. (площадь основания, умноженная на высоту).
sбок = р·h = 2(3+5)·9 = 144 ед² ( периметр, умноженный на высоту)
Поделитесь своими знаниями, ответьте на вопрос:
Нарисуй прямоугольный треугольник abc так, чтобы ∢c =90°, ca=18 см и cb=24 см.