Объяснение:
ΔАВС - равнобедренный, АВ = ВС
АС - основание, h = ВК - высота Δ- ка
О - центр вписанной окружности
(Центр вписанной в треугольник окружности является точкой пересечения его биссектрис. Поскольку в равнобедренном треугольнике биссектриса, проведенная к основанию, совпадает с медианой и высотой, то центр вписанной в равнобедренный треугольник окружности лежит на высоте и медиане, проведенных к основанию).
Соединим т.О и т.С.
Т.к. ВК⊥ АС, то ΔОКС - прямоугольный.
ОС - биссектриса, поэтому ∠ОСК = 30°/2 = 15°
r /КС = tg 15° → r = KC * tg 15°
h = tg30°* KC
h - r = 2 по условию, поэтому
KC*tg30° - KC * tg 15° = 2
КС(tg30°- tg 15°) = 2
КС = 2 / (tg30°- tg 15°)
АС = 2КС = 4 / (tg30°- tg 15°)
Пусть AD и BC пересекаются в точке E.
Отрезки касательных из одной точки равны, EA=EB, ED=EC.
△AEB, △DEC - равнобедренные => EAB =90 -E/2 =EDC => AB||DC
ABCD - трапеция
MA=MK=MD, NB=NK=NC (отрезки касательных из одной точки)
MN - средняя линия трапеции ABCD
MN =(AB+CD)/2 =(8+13)/2 =10,5
NB=NK=NC => NK=BC/2
Центры лежат на биссектрисе угла E (т.к. окружности вписаны в угол).
Точка внешнего касания окружностей K лежит на линии центров, то есть на биссектрисе угла E.
MN||AB => △MEN~△AEB =>
△MEN - равнобедренный, EK - биссектриса и медиана, NK=MN/2
BC =MN =10,5
Поделитесь своими знаниями, ответьте на вопрос:
Сторони основи прямого паралелепіпеда дорівнюють 2 см і 2√3 см, а один із кутів основи дорівнює 30°. площа діагонального перерізу паралелепіпеда, який проходить через меншу діагональ основи, дорівнює 8² см. знайдіть площу повної поверхні паралелепіпеда стороны основания прямого параллелепипеда равны 2 см и 2√3 см, а один из углов основания равен 30 °. площадь диагонального сечения параллелепипеда, который проходит через меньшую диагональ основания равен 8² см. найдите площадь полной поверхности параллелепипедаз
Правильное условие задания:
Стороны основания прямого параллелепипеда равны 2 см и 2√3 см, а один из углов основания равен 30 °. Площадь диагонального сечения параллелепипеда, который проходит через меньшую диагональ основания, равен 8 см². Найдите площадь полной поверхности параллелепипеда.
В ΔABD применим теорему косинусов:
BD² = AB² + AD² - 2•AB•AD•cos∠BAD
BD² = 2² + (2√3)² - 2•2•2√3•cos30° = 4 + 12 - 8√3•(√3/2) = 16 - 12 = 4
BD² = 4 ⇒ BD = 2 см
Площадь диагонального сечения: S (bb₁d₁d) = 8 см²
BB₁D₁D - прямоугольник ⇒ S = BD • B₁B = 2 • B₁B = 8 ⇒ B₁B = 4 см
Площадь полной поверхности параллелепипеда:
S (полн.) = 2•S (осн.) + S (бок.) = 2 • S (осн.) + P (осн.) • H = 2•(AB•AD•sin30°) + 2•(AB + AD)•B₁B = 2•(2•2√3•sin30°) + 2•(2 + 2√3)•4 = 4√3 + 16 + 16√3 = 20√3 + 16 cм²
ответ: 20√3 + 16 см²