r = (a+b-c)/2 , где а,b - катеты, с - гипотенуза, тогда
4 = (а+b -26)/2
а+b -26 = 8
а+b = 34
Таким образом Р = а+b +с =34+26 =60 (см).
2) Правило:
отрезки касательных к окружности, проведённые из одной точки, равны, т.е.
ВМ =ВР=5, АМ=АТ=12, СТ=СР = х, тогда по теореме Пифагора:
(5 + х)²+(12 + х)²=17²
25 + 10х + х² +144 +24х +х² = 289
2·х² +34х+169 - 289 =0
2·х² +34х -120 =0
х² + 17х -60 =0
х₁ = 3; х₂= -20 ( не подходит по смыслу задачи)
Таким образом АС = 15, ВС = 8 и Р= 15+8+17 = 40 (см).
Рассмотрим прямоугольный треугольник АВС с прямым углом В. Пусть точка О - центр вписанной окружности. Проведем из точки О радиусы в точки касания вписанной окружности со сторонами треугольника. Назовем основания этих радиусов М, N, K. Эти радиусы будут перпендикулярны к сторонам треугольника(свойство радиуса, проведенного в точку касания). Соединим также точку О с вершинами А и С треугольника.
Теперь рассмотрим четырехугольник ВМОК: очевидно, что это квадрат со стороной 4 см.
Рассмотрим треугольники АМО и АNО: они прямоугольные и равны по катету и гипотенузе( АО-общая гипотенуза, МО=ОN=4) Из равенства треугольников следует, что АМ=AN. Обозначим длины этих сторон за х.
Аналогично доказываем, что СК=СN. Обозначим их за у.
Периметр треугольника будет равен 2х+2у+8= 2(х+у)+8. Так как х+у=26, то Р= 2*26+8=60.
ответ:60см ( Рисунок во вложении. )
Поделитесь своими знаниями, ответьте на вопрос:
Через точки m и n принадлежащие сторонам ab и bc треугольника abc проведена прямая mn параллельно стороне ac. чему равна сторона cn если: bc=6 mn=4 ac=9?
∠BAC равен ∠NMB как соответственные углы при параллельных прямых MN и AC и секущей AB.
∠ACB равен ∠MNB как соответственные углы при параллельных прямых MN и AC и секущей BC.
Треугольник ABC подобен треугольнику MBN по первому признаку подобия треугольников: если два угла одного треугольника соответственно равны двум углам другого треугольника, то такие треугольники подобны.
Таким образом, исходя из подобия треугольников, составим следующее соотношение:
Очевидно, что
ответ: