Дано:
SABC - пирамида
SО - высота
AB=8см
ã=45°
V-?
Объем пирамиды: V=1/3×Sосн×h
В основании лежит правильный треугольник, площадь которого S=a²√3/4=8²√3/4=16√3см².
Высота правильного треугольника: h=a√3/2= 8√3/2=4√3см.
Точка, на которую опущена высота, является серединой правильного треугольника (точка пересечения медиан). Эти медианы делятся в отношении 2:1 от вершины.
AO=2×4√3/3=8√3/3.
Рассмотрим треугольник AOS, у которого O=90°, A=S=45°. Если два угла равны 45°, то их катеты равны. Значит, высота пирамиды равна 8√3/3.
Найдем объем:
V=1/3×16√3×8√3/3=128/3 см³
В основании правильной четыреухгольной пирамиды SABCD лежит квадрат ABCD, боковые грани — равные треугольники с общей вершиной S. Высота пирамиды Н опускается в центр пересечения O диагоналей квадрата основания из вершины пирамиды S.
Угол между боковой гранью и плоскостью основания пирамиды является углом между высотой h(бок) боковой грани (перпендикуляром SM, опущенным из вершины S пирамиды к основанию AB равнобедренного треугольника боковой грани) и плоскостью основания.
В прямоугольном треугольнике SOM, SM - гипотенуза, SO=H = катет, противолежащий углу 30 градусов, MO - катет, прилежащий углу 30 градусов. МО = половине стороны квадрата основания пирамиды.
МО = AB/2 = 6/2 = 3 см
Катет, противолежащий углу 30 градусов, равен половине гипотенузы⇒ SM = 2H
по теореме Пифагора:
H² + MO² = (2H)²
H² + 9 = 4H²
3H² = 9
H² = 3
H = √3 см
В прямоугольном треугольнике SOA, боковое ребро пирамиды SA - гипотенуза, SO=H=√3 - катет, противолежащий искомому углу, AO - катет, прилежащий искомому углу. AO= половине диагонали квадрата основания пирамиды.
AO = AB*√2 / 2 = 6 * √2 / 2 = 3√2 см
Тангенс искомого угла - отношение противолежащего катета к прилежащему.
√3 / 3√2 = 1 / √6 ≈ 0.4082, что приблизительно соответствует углу 22°12' (по таблице Брадиса)
Угол между боковым ребром и плоскостью основания пирамиды приблизительно равен 22 градуса 12 минут.
Поделитесь своими знаниями, ответьте на вопрос:
20 . "если две прямые пересечены секущей, то сумма односторонних углов равна 180°" а могут ли односторонние углы быть да то как и почему? )