Из прямоугольного треугольника ABD
AD^2=AB^2+BD^2=9+16=25
AD=5
Площадь основания равна 2*площадь ABD=2*(3*4/2)=3*4=12
AD параллельно BC, следовательно параллельно B1C1, поэтому AD принадлежит плоскости AB1C1, и это прямая пересечения плоскости основания с плоскостью AB1C1
Пусть BE высота в треугольнике ABD
Тогда угол B1EB это угол между плоскостью основания и плоскостью AB1C1, так как BE перпендикулярно AD, B1E перпендикулярно AD по теореме о трёх перпендикулярах.
Треугольник B1EB -- прямоугольный треугольник с углом 45 градусов, а следовательно, равнобедренный прямоугольный треугольник, поэтому B1B=BE
Чтобы найти высоту BE выразим площадь треугольника ABD двумя
площадь ABD = AB*BD/2 = AD*BE/2, отсюда
BE=AB*BD/AD=3*4/5=12/5=2,4
Площадь полной поверхности равна
2*площадь основания+площадь боковой поверхности
площадь боковой поверхности = периметр основания умножить на высоту
периметр основания = AB+BC+CD+AD=3+5+3+5=16
тогда площадь боковой поверхности 16*2,4=38,4
площадь полной поверхности
2*12+38,4=24+38,4=62,4
Сумма острых углов прямоугольного треугольника равна 90°.
=> ∠DBC = 90° - 70° = 20°
Так как BD - биссектриса => ∠АВС = 20° × 2 = 40°
Сумма острых углов прямоугольного треугольника равна 90°.
=> ∠BAD = 90° - 40° = 50°
ответ: 50°.
Задача#2.Очевидно, что во 2 задаче опечатка.На рисунке написано 0,4 дм, а в дано 0,4 см.
Очевидно, что правильно - 0,4 дм.
1 дм = 10 см
0,4 дм = 4 см
Рассмотрим ∆АКВ и ∆СFD:
KB = FC, по условию.
АВ = CD, по условию.
=> ∠AКВ = ∠CFD, по катетам.
=> АК = DF.
Ч.Т.Д.
Задача#3.Рассмотрим ∆ABD и ∆DBC:
∠ABD = ∠CBD, по условию.
BD - общая сторона.
Так как ∠ADE = ∠CED => ∠ADB = ∠CDB, так как сумма смежных углов равна 180°.
=> ∆ABD = ∆DBC, по 2 признаку равенства треугольников.
=> АВ = СВ = 21 см.
ответ: 21 см.
Поделитесь своими знаниями, ответьте на вопрос:
Найдите площадь прямоугольника если его диагональ равна 8 см а угол между диагоналями 45 градусов
Формула: S= (1/2)*d²*Sinα, где d - диагональ, а α - угол между диагоналями. Тогда S=(1/2)*64*√2/2 =16√2 см.