О– точка пересечения диагоналей квадрата АВСD.
ОО1||AA1.
К– точка пересечения OO1 c СА1.
ОК– средняя линия треугольника АА1С
ОК=1/2
Проводим ОМ⊥AD.
Треугольник AOD – равнобедренный. ОМ – высота и медиана.
ОМ=1/2
АМ=MD.
Тогда МК⊥AD по теореме о трех перпендикулярах.
Докажем, что МК⊥СА1.
Так как АМ=МD и АА1=СD, то прямоугольные треугольники АА1М и МDC равны по двум катетам.
А1М=МС.
Значит треугольник А1МС – равнобедренный и МК медиана, а значит и высота.
МК⊥СА1.
Из прямоугольного треугольника МОК по теореме Пифагора
МК2= МО2+OK2
MK2=(1/2)2+(1/2)2
Mk2=1/2
MK=√2/2
О т в е т. √2/2.
АА₁⊥(АВС), BD ⊂(АВС), ⇒BD⊥AA₁,
BD⊥AO как диагонали квадрата, ⇒
BD⊥(AA₁O).
Плоскость (BA₁D) проходит через BD, значит плоскости (AA₁O) и (BA₁D) перпендикулярны.
Проведем АН⊥А₁О.
АН∈ (AA₁O), ⇒ АН⊥BD, значит АН⊥(BA₁D).
АН - искомое расстояние.
АА₁ = 1,
АО = АС/2 = √2/2,
А₁О = √(АА₁² + АО²) = √(1 + 1/2) = √6/2 - по теореме Пифагора
АН = АА₁ · АО / А₁О (высота, проведенная к гипотенузе, равна отношению произведения катетов к гипотенузе)
АН = √2/2 / √6/2 = 1/√3 = √3/3
Объяснение:https://ru-static.z-dn.net/files/d0f/c1505357389e6f0e82fcc04669cc5d18.bmp
Поделитесь своими знаниями, ответьте на вопрос:
Основание пирамиды прямоугольной треугольник с гипотенузой узой 4 см и острым углом 30 боковые грани содержащие стороны этого угла перпендикулярны к плоскости основания а третья наклонена к плоскости основания под углом 60 градусов найти объём пирамиды
АВ^2=AC^2-BC^2=16-4=12
АВ=2√3
Площадь тр-ка равна половине произведения катетов: S=½*AB*BC=½*2√3*2=2√3 см кв.
По условию задачи в прям-ом тр-ке КАВ <КВА=60°, значит <АКВ=30°. Получается, что гипотенуза КВ=2*АВ=2*2√3=4√3 см
По теореме Пифагора найдем высоту КА
KA^2=KB^2-AB^2=48-12=36
КА=6 см
Найдем объем пирамиды: V=1/3*S*H
V=1/3*2√3*6=4√3 см куб.