Суханова1532
?>

Выберите верное утверждение а)куб является прямоугольным параллелепипед ом б)ребра куба выходящие из одной вершины имеют разную длину в) объём куба можно найти по формуле v=a³ где а длина ребра куба г) у куба все грани равны

Геометрия

Ответы

oledrag7
Вроде А и Г это точно 
123456789987654321
simonovaliubov5852
AB = CD так как трапеция равнобедренная,
∠ВАD = ∠CDA как углы при основании равнобедренной трапеции,
AD - общая сторона для треугольников BAD и CDA, ⇒
ΔBAD = ΔCDA  по двум сторонам и углу между ними.

Значит ∠CAD = ∠BDA.
Тогда ΔOAD равнобедренный, прямоугольный, и его высота (ОН) является и медианой, проведенной к гипотенузе, значит, равна ее половине:
ОН = AD/2

ΔВОС подобен ΔDOA по двум углам, значит и
ОК = ВС/2

КН = AD/2 + BC/2 = (AD + BC)/2 ⇒ высота равна средней линии.

Sabcd = (AD + BC)/2 · KH = KH · KH = 18² = 324 см²

И вообще, в равнобедренной трапеции с перпендикулярными диагоналями высота равна средней  линии трапеции (или полусумме оснований).
vkurnosov20008

ответ:Коло, описане навколо трикутника

Коло називається описаним навколо трикутника, якщо всі вершини трикутника розміщені на колі.

Центр кола рівновіддалений від усіх вершин, тобто повинен розташовуватися в точці перетину серединних перпендикулярів до сторін трикутника.

Навколо будь-якого трикутника можна описати коло, оскільки серединні перпендикуляри до сторін перетинаються в одній точці.

Для гострокутного трикутника центр кола знаходиться в трикутнику.

Інша ситуація з прямокутним і тупокутним трикутниками.

Коло, вписане в трикутник

Коло називається вписаним у трикутник, якщо всі сторони трикутника дотикаються до кола.

Центр кола рівновіддалений від усіх сторін, тобто повинен розміщуватися в точці перетину бісектрис трикутника.

У будь-який трикутник можна вписати коло, оскільки бісектриси трикутника перетинаються в одній точці.

Оскільки бісектриси кутів трикутника завжди перетинаються всередині трикутника, для всіх трикутників центр уписаного кола розміщується в трикутниках.

У рівностороннього трикутника збігаються бісектриси, медіани та висоти, тобто ці відрізки є також серединними перпендикулярами. Це означає, що центри описаного і вписаного кола збігаються.

Розв'яжи:

1. У прямокутний трикутник ABC вписано коло, ∠B — прямий. Обчисли кути трикутника A та C, а також кути, що виходять з центра кола, якщо один з них ∠ FOE = 146°.

Відповідь:

∠ A=___ °

∠ C= ___°

∠EOD =___ °

∠FOD =___ °

2. Знайди трикутник, у який вписане коло.

Відповідь: 1) DEF, 2) STU, 3) ABC, 4) KLM, 5)EFG, 6) PRT.

Знайди трикутники, навколо яких описано коло.

Відповідь: 1) ABC, 2) KLM, 3) PRT, 4) DEF, 5) MNL, 6) EFG.

Домашнє завдання.03.04.2020 р. Скласти конспект параграфа 24.

Домашнє завдання.08.04.2020 р. Повторити параграф 24. Виконати вправи № 641, № 649.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Выберите верное утверждение а)куб является прямоугольным параллелепипед ом б)ребра куба выходящие из одной вершины имеют разную длину в) объём куба можно найти по формуле v=a³ где а длина ребра куба г) у куба все грани равны
Ваше имя (никнейм)*
Email*
Комментарий*