Анатольевич-Фатима
?>

Найдите площадь трапеции, вершины которой имеют координаты (1; 1), (4; 1), (4; 4), (1; 2

Геометрия

Ответы

julia3594265843
Площадь трапеции равна 9
zorinka777
Она лежит на боку:
Большее основание = 3
Меньшее основание = 1
Средняя линия = 2
Высота = 3
S=2*3=6
Tatyana-Sergeevna108
Если трапецию можно вписать в окружность, то она равнобедренная.
<CAD=<BCA (как внутренние накрест лежащие при параллельных АВ и CD и секущей АС. Значит и <ВАС=30° (АС - биссектриса) и треугольник АВС равнобедренный. Тогда его высота ВН - это и медиана. Значит ВН - это часть радиуса ВО, так как радиус, перпендикулярный хорде, делит ее пополам. Угол АВС этого треугольника равен 120°. Это вписанный угол, опирающийся на дугу АDC. Значит градусная мера дуги АDC в два раза больше и равна 240°. Тогда градусная мера дуги АВС равна АВС=360°-240°=120°.
На эту дугу опирается центральный угол АОС, соответственно равный 120°. Итак, мы имеем четырехугольник АВСО, являющийся ромбом, и
точка О лежит на стороне АD нашей трапеции. Следоательно
АВ=ВС=АО=ОD=ОС=СD=R=4см. Проведем высоту трапеции СК.
В равностороннем треугольнике ОСD высота СК равна (√3/2)*а, где а=4см. СК=2√3см.
Площадь трапеции S=(BC+AD)*CК/2=12√3см².
ответ: S=12√3см².

Трапеция abcd(ad||bc) вписана в окружность, радиус которой равен 4см; ac- биссектриса угла a, угол b
oslopovavera
Задача в одно действие.
Основания трапеции AB и CD. Если продолжить AB за точку B, и DM за точку M, до их пересечения в точке D1, то очевидно DM = D1M;
Тут можно кучу обоснований дать, например, равны треугольники AMD и BMD1 по КУЧЕ углов (это очевидно подобные треугольники, то есть у них все углы равны) и одной стороне BM = CM;
На самом деле есть "более старшее"обоснование. параллельные прямые делят пропорционально ВСЕ секущие, а тут "неявно" присутствует еще одна параллельная - средняя линия, содержащая точку M.
Вот после этого очевидно, что если также продолжить DC и AM до пересечения в точке A1, то A1M = AM;
То есть получился параллелограмм AD1A1D; (диагонали делятся пополам точкой пересечения). В силу упомянутого равенства треугольников AMD и BMD1; упомянутая в задаче сумма площадей равна площади треугольника D1MA;
Диагонали делят параллелограмм на 4 треугольника, равных по площади, то есть упомянутая сумма равна также площади треугольника DMA, а это уже закрывает вопрос задачи.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Найдите площадь трапеции, вершины которой имеют координаты (1; 1), (4; 1), (4; 4), (1; 2
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

snip99
Itina321t
olyafom1234
Александрович Андреевна
Soliyabronzoni
korolev-comitet8825
elmira01048775
Бурмистрова-Ирина660
lagutkins
appmicom
Kornilova
VladimirovichKazakova1202
mirsanm26249
Eduard Melikyan
Aleksandrivanovna