Объяснение: №1. 1) Так как АМ=2МС, то пусть АМ=2х, МС=х, тогда АС= АМ+МС=х+2х=3х 2) Пусть МК- данный серединный перпендикуляр, К∈АВ, АК=КВ= с/2=0,5с, где гипотенуза АВ=с; М∈АС, МК⊥АВ 3)ΔАВС подобенΔАМК : по двум углам: ∠А-общий, ∠С=∠К=90°, значит их стороны пропорциональны АС/АК= АВ/АМ ⇒3х/0,5с = с/2х, ⇒0,5с²=6х², ⇒х= с/√12 3) Из ΔАВС ⇒ Sin B=AC/AB= 3x/c=3с/(с√12)= 3√12/12= √3/2, ⇒∠В=60°, тогда∠А=90°-60°=30° №2. Раз ΔАВС-прямоугольный, тогипотенуза больше катета, ⇒АС-гипотенуза, ∠В=90°. ТО расстояние: а) от A до BC равно 24, б) от C до AB равно 7, в) может ли расстояние от B до AC быть равным 10см?- Нет, т.к. в прямоугольном ΔВМС гипотенуза ВМ должна быть больше катета ВМ ( ВМ⊥АС)
1 из трех точек, не лежащих на одной прямой, и трёх отрезков, их соединяющих
2 отрезок, соединяющий эту вершину с серединой противолежащей стороны
3 только три медианы
4 сумма длин всех его сторон
5 высота, проведённая к основанию является биссектрисой и медианой
6 перпендикуляр, проведённый из вершины треугольника к прямой, содержащей противоположную сторону
7 все его стороны равны
8 Медиана равнобедренного треугольника, проведённая к его боковой стороне, является биссектрисой и высотой
9 всегда верно
Объяснение:
Поделитесь своими знаниями, ответьте на вопрос:
Решите из точки, не лежащей на данной прямой, проведена наклонная длиной 12 см, которая образует с этой прямой угол 60 градусов. найдите длину проекции наклонной на эту прямую.
Решение.
∠ВАС=90-60=30°.Катет ВС лежит против угла 30°. значит равен половине АВ. ВС=12/2=6 см.