ale-protasov
?>

Стороны параллелограмма равны 10 и 12 см а один из углов 60.найти площадь параллелогоамма

Геометрия

Ответы

serge-lysoff

Площадь параллелограмма равна произведению длин его сторон на синус угла между ними.

S=a*b*sinα=10*12*sin60=120*√3/2=60√3 см².

smint056950
Пусть АС=4х, ВD=6x, тогда отношение AC:BD=4x:6x=2:3

Диагонали ромба взаимно перпендикулярны, в точке пересечения делятся пополам и разбивают ромб на 4 равных прямоугольных треугольника.
По теореме Пифагора сторона ромба
а²=(d₁/2)²+(d₂/2)²=(2x)²+(3x)²=13x²
а=х√13

Из формул для вычисления площади треугольника АОВ
S(Δ AOB)=AO·OB/2
и
S(Δ AOB)=AB·OE/2

находим OE
AO·OB=AB·OE
OE=2x·3x/х√13=6х/√13.

Из треугольника АОЕ по теореме Пифагора
AE²=AO²-EO²=(2x)²-(6x/√13)²=4x²-(36x²/13)=(52x²-36x²)/13=16x²/13
AE=4x/√13

S(Δ AOE)=AE·OE/2

(4x/√13)·(6x/√13)=54
24x²=54·13
x²=9·13/4

S(ромба)=a·h=(x√13)·2OE=(x√13)·2·(6x/√13)=12x²=12·(9·13/4)=27·13=
=351 кв. ед
bellatrixstudio
Есть аксиома такая, если прямая параллельна одной из двух параллельных прямых, тогда она параллельна и второй.

Теперь, если прямые не пересекаются, то они параллельны. Но нам известно, что прямая пересекает одну из двух параллельных прямых, соответственно, она не может быть параллельной (не пересекаться) со второй. Это следствие вытекает из аксиомы. Если бы она не пересекала вторую, значит и к первой была бы параллельна.

Примечание. Все вышесказанное справедливо для прямых относящихся (принадлежащих) одной плоскости.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Стороны параллелограмма равны 10 и 12 см а один из углов 60.найти площадь параллелогоамма
Ваше имя (никнейм)*
Email*
Комментарий*