Ladyby6224
?>

Начертите параллелограмм диагонали которого равны 3см и 5 см. .

Геометрия

Ответы

Анатольевич

Чертишь две диагонали, центры которых будут пересекаться, соединяешь концы.



Начертите параллелограмм диагонали которого равны 3см и 5 см. .
Усошина1059
Высота горы ≈ 0,683 км ≈ 683 м.
Объяснение:
Дано: ΔABC; ВС - высота горы; ∠BAC = 30°; ∠BDC = 45°; AD = 0,5 км.
Найти высоту горы BC.
Решение.
1) Расстоянием от точки до прямой является длина перпендикуляра, опущенного из этой точки на прямую.
⇒ BC⊥AC, ΔABC прямоугольный, ∠С = 90°, высота горы - катет BC.
2) В ΔABC ∠BAC = 30° (по условию), ∠ACB = 90°,
тогда ∠ABC = 180° - 30° - 90° = 60°.
Обозначим для удобства высоту горы катет ВС = x. В прямоугольном треугольнике катет, лежащий против угла 30° равен половине гипотенузы ⇒ гипотенуза AB = 2x км.
3) В ΔDBC ∠BDC = 45° (по условию), ∠DCB = 90°,
тогда ∠DBC = 180° - 90° - 45° = 45°. ⇒ ΔDBC равнобедренный, так как имеет два равных угла ⇒ DC = BC = x км.
4) Тогда в ΔABC сторона AC = x + 0,5 км.
Из ΔABC найти BC можно двумя
По теореме Пифагора:
allo01

1) По теореме Пифагора:

x^2 = 3^2 + 3^2\\\\x = \sqrt{3^2+3^2} = \sqrt{9+9} = \sqrt{18} = \boxed{3\sqrt{2}}

ответ: 3\sqrt{2} .

2) По теореме Пифагора:

10^2 = x^2 + 6^2\\\\x = \sqrt{10^2-6^2} = \sqrt{100-36} = \sqrt{64} = \boxed{8}  .

ответ: 8.

3) Диагональ квадрата равна произведению его стороны на \sqrt{2} , тогда:

a = \dfrac{d}{\sqrt{2}} = \dfrac{6}{\sqrt{2}} = \sqrt{\dfrac{36}{2}} = \sqrt{18} = \boxed{3\sqrt{2}}

ответ: 3\sqrt{2} .

4) По теореме Пифагора:

8^2 + x^2 = 10^2\\\\x = \sqrt{10^2 - 8^2} = \sqrt{100 - 64} = \sqrt{36} = \boxed{6}  .

Площадь прямоугольного треугольника равна полупроизведению его катетов.

S_{\bigtriangleup} = \dfrac{8\cdot 6}{2} = \dfrac{48}{2} = \boxed{24}  .

ответ: 6; 24.

5) Треугольник равнобедренный (по условию). В равнобедренном треугольнике высота h является биссектрисой и медианой. Образовавшиеся два треугольника являются прямоугольными. По теореме Пифагора:

x^2 = h^2 + \left (\dfrac{12}{2}\right )^2 = h^2 + 6^2 = h^2 + 36\\\\x = \sqrt{h^2+36} = \sqrt{10^2 + 36} = \sqrt{100+36} = \sqrt{136} = \boxed{2\sqrt{34}}

ответ: 2\sqrt{34} .

6) Катет, лежащий напротив угла с градусной величиной 30°, равен половине гипотенузы. Пусть c - гипотенуза этого треугольника. По теореме Пифагора:

c^2 = a^2 + x^2 =\\\\x = \sqrt{c^2 - a^2} = \sqrt{c^2 - \left (\dfrac{c}{2}\right )^2} = \sqrt{c^2 - \dfrac{c^2}{4}} = \sqrt{\dfrac{3c^2}{4}} = \boxed{\dfrac{c\sqrt{3}}{2}}

Больше сделать здесь ничего нельзя, поскольку длина гипотенузы нам не дана. Но если бы она была дана, то длину катета x можно было бы вычислить через эту формулу.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Начертите параллелограмм диагонали которого равны 3см и 5 см. .
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

dpolkovnikov
chavagorin
Олеся
osherbinin
grenysherg2873
Ye.Vadim
avanesss
ЕкатеринаРустам
martinson
aananasAnastiya1270
alekseisamohvolov7
scorpion21c
kep92
info49
nestruev