Ромб - это параллелограмм, у которого все стороны равны (докажите сами). То есть ромб является параллелограммом.
<AOE = <ACB (как соответственные углы при ||-ных прямых OE и BC и их секущей AC).
Тогда треугольники ACB и AOE подобны по двум углам (<A=<A, <AOE=<ACB),
тогда их стороны пропорциональны, то есть:
AC/AO = BC/EO = AB/AE. (*)
Треугольники AOB и COD равны (докажите сами), тогда
AO = CO, тогда
AC/AO = (AO+CO)/AO = 2AO/AO = 2.
Тогда из (*):
2 = BC/EO, отсюда EO = (1/2)*BC,
Но у ромба все стороны равны, то есть BC = DC, поэтому
EO = (1/2)*BC = (1/2)*DC.
Ч. т. д.
Поделитесь своими знаниями, ответьте на вопрос:
Углы кав и ква равны. в-середина отрезков км и ат. сумма градусных мер углов кав и твм=72градуса. найдите градусную меру угла квт
В – середина отрезков КМ и АТ. При пересечении этих отрезков образуются равные вертикальные углы. ∠ТВМ=∠АВК. Так как в треугольнике АКВ углы при АВ равны, то сумма градусных мер каждой пары из трех равных углов будет одинаковой. ∠КВА+∠ТВМ = 72°. Каждый угол из этих трёх равен 72°:2=36°. Угол КВТ смежный углам КВА и ТВМ. Угол КВТ= 180°-36°=144°