Объем пирамиды равен одной трети произведения ее высоты на площадь основания.
V=⅓ S∙h
Основание правильного шестиугольника состоит из шести правильных треугольников.
Площадь правильного треугольника находят по формуле:
S=(а²√3):4
S=4√3):4=√3
Площадь правильного шестиугольника в основании пирамиды:
S=6√3
Высоту найдем из прямоугольного треугольника АВО:
Так как ребро образует с с диагональю основания угол 60°, высота пирамиды ВО равна
H=ВО=2:ctg (60°)= 2·1/√3=2√3
Можно найти высоту и по т. Пифагора с тем же результатом.
V= 2√3∙6 √3:3=12 (кубических единиц)
Подробнее - на -
Объяснение:
Поделитесь своими знаниями, ответьте на вопрос:
Вправильной треугольной призме площадь сечения, проходящего через боковое ребро и высоту основания равна 12, сторона основания 4. найти боковое ребро.
Итак давай начнем : 1) Вспомним, что площадь поверхности правильной четырехугольной призмы выражается через сторону ее основания a и боковое ребро h формулой : Sпов.прав.призмы=2a²+4aH, где a-сторона основания , h-высота( боковое ребро)
Подставляем эту формулу в нашу задачу :
12=2*4²+4*4H;
12=32+16H;
-16H=12-32
-16H=-20
H=-20/16
H=-1,25
ответ : Боковое ребро равно -1,25