Решение: Радиус окружности описанной вокруг равностороннего треугольника находится по формуле: R=√3/3 - где а-сторона треугольника Высота в таком треугольнике можно найти по формуле: h=√3/a*a - где а -сторона треугольника По этой формуле найдём сторону равностороннего треугольника: а=h : √3/2 или: а=3 : √3/2=3*2/√3=6/√3 (см) Подставим найденное значение стороны треугольника в формулу для нахождения радиуса описанной окружности: R=√3/3 *6/√3=√3*6/3*√3=6/3=2 (см)
ответ: Высота данного треугольника равна 2см
Kalashnikova
04.01.2023
Пусть H - высота пирамиды SABCD, а S - площадь ее основания (четырехугольника АВCD), тогда ее объем V=(1/3)*S*H. Пусть h - высота пирамиды MBCD, а s - площадь ее основания (треугольника ВCD), тогда ее объем v=(1/3)*s*h. Тогда соотношение объемов пирамид MBCD и SABCD равно: v/V=((1/3)*s*h)/((1/3)*S*H)=(s/S)*(h/H). Так как точка M на середине высоты пирамиды SABCD, то (h/H)=0,5. и объем пирамиды MBCD равен v=V*(h/H)*(s/S)=18*0,5*(s/S)=9*(s/S). Так как про форму четырехугольника АВСD ничего не сказано, то о соотношении площадей треугольника ВCD и четырехугольника АВСD ничего сказать нельзя. Если четырехугольник АВСD прямоугольник, или параллелограмм, то s/S=0,5, и объем пирамиды MBCD v=9*0,5=4,5.
|а|=√(64+4)=√68=2√17...