koll23
?>

Решена , , луч dk - биссектриса угла d. на сторонах угла d отмечены точки n и p так, что угол dkn = углу dkp. докажите, что dn = dp.

Геометрия

Ответы

Баринова

всё доказательство на рисунке


Решена ,, луч dk - биссектриса угла d. на сторонах угла d отмечены точки n и p так, что угол dkn = у
ak74-81

Для даної задачі треба скористатися властивостями катетів та їх проекцій на гіпотенузу в прямокутному трикутнику.

Перший б

Катет прямокутного трикутника — середнє пропорційне між гіпотенузою c і проекцією цього катета на гіпотенузу:

a^{2} = a_{c}c \Rightarrow a = \sqrt{a_{c}(a_{c}+ b_{c})} = \sqrt{6 \cdot (6 + 24)} = \sqrt{180} = 6\sqrt{5} см

b^{2} = b_{c}c \Rightarrow a = \sqrt{b_{c}(a_{c}+ b_{c})} = \sqrt{24 \cdot (6 + 24)} = \sqrt{720} = 12\sqrt{5} см

Площа S прямокутного трикутника знаходится як півдобуток його катетів:

S = \dfrac{a \cdot b}{2} = \dfrac{6\sqrt{5} \cdot 12\sqrt{5}}{2} = 180 см²

Другий б

Висота h_{c} прямокутного трикутника, що проведена до гіпотенузи c з вершини прямого кута, — середнє пропорційне між проекціями катетів на гіпотенузу:

h^{2}_{c} = a_{c}b_{c} \Rightarrow h_{c} = \sqrt{a_{c}b_{c}} = \sqrt{6 \cdot 24} = \sqrt{144} = 12 см

Площа S будь-якого трикутника знаходиться як півдобуток його сторони на висоту, що проведена до цієї сторони. У нашому випадку — це півдобуток гіпотенузи c і висоти h_{c}, що до неї проведена:

S = \dfrac{1}{2} \cdot c \cdot h_{c} = \dfrac{1}{2} \cdot (6 + 24) \cdot 12 = 30 \cdot 6 = 180 см²

Відповідь: 180 см².


Знайдіть площу прямокутного трикутника , якщо висота проведена до гіпотенузи ,поділяє її на відрізки
sve34166163
1) Сумма квадратов диагоналей параллелограмма равна сумме квадратов его сторон.
Т.к. в ромбе все стороны равны, то
d²+D²=4a²
100+D²=4*169
D²=676-100
D=√576
D=24
-------------
2)Проекция наклонной - это расстояние от основания этой наклонной до основания перпендикуляра, опущенного из другого конца наклонной на прямую, к которой наклонная проведена.
Так как наклонные проведены из одной точки, перпендикуляр от этой точки  общий для для обеих наклонных.
Пусть эти наклонные будут АВ и АС, перпендикуляр - АН.
Соединив В и С, получим треугольник АВС с высотой АН.
По условию ВН=5, СН=9, АС-АВ=2
Обозначим длину АВ х.
Тогда АС=х+2
Выразим АН² по т. Пифагора из треугольника АНВ,
АН²=х²-25АН², 
АН ², выраженная по т. Пифагора из треугольника АНС
АН²=(х +2)²-81
Приравняем эти два уравнения, т.к. они выражают одну величину. 
х²-25=х²-4х+81
4х=77-25
х=52:4
х=13
АВ=13
АС=13+2=15
1сторона ромба =13, 1 с диагоналей =10, найти вторую диагональ с точки к прямой проведены 2 наклонны

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Решена , , луч dk - биссектриса угла d. на сторонах угла d отмечены точки n и p так, что угол dkn = углу dkp. докажите, что dn = dp.
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

moskvichkabakery56
Tatarnikova1507
yusliva
maksim1lssah575
yna21289
aynaakzhigitova
vovkiv7864
arionul-secondary2
makeeva-nataliya60
yastrik
stark11
denisrogachv
hr2251
Fruktova Gazaryan
Агибалов428