пирамида КАВСД, К-вершина, АВСД-основание трапеция, АВ=СД, АД=8, ВС=6, О-центр основания - центр вписанной окружности, в трапецию вписывается окружность тогда АД+ВС=АВ+СД, 8+6=2*АВ, АВ=СД=7, проводим высоты ВМ и СТ на АД, МВСТ-прямоугольник ВС=МТ=6, треугольнике АВМ=треугольник ТСД как прямоугольные по гипотенузе и острому углу (уголА=уголД), АМ=ТД=(АД-МТ)/2=(8-6)/2=1, треугольник АСМ прямоугольный, ВМ²=АС²-АМ²=49-1=48, ВМ=4√3=диаметр окружности,
проводим радиус ОН=1/2ВМ=2√3 перпендикулярный в точку касания на АД
проводим апофему КН, треугольник КОН прямоугольный, уголКНО=30, КН=ОН/cos30=2√3/(√3/2)=4, площадь боковая=1/2*периметрАВСД*КН=1/2*(7+7+8+6)*4=56
Продлим РА за точку А и СВ за точку В, точку пересечения назовём О.
∆РОС – прямоугольный с прямым углом Р.
Сумма острых углов прямоугольного треугольника равна 90°. Исходя из этого: угол РОС=90°–угол ОСР=90°–45°=45°.
Получим что угол РОС=угол ОСР, тогда ∆РОС – равнобедренный с основанием ОВ.
Тогда РО=РС=9,2 см.
Основания трапеции параллельны, тоесть АВ//РС.
Следовательно: угол ОВА=угол ОСР как соответственные при параллельных прямых АВ и РС и секущей ОС; тогда угол ОВА=45°.
Угол АОВ=45° (доказано ранее)
Получим что угол ОВА=угол АОВ.
Тогда ∆АОВ – равнобедренный с основанием ОВ. Следовательно АО=АВ=2,6 см.
РА=РО–АО=9,2–2,6=6,6 см.
ответ: 6,6 см.
Поделитесь своими знаниями, ответьте на вопрос:
Катеты прямоугольного треугольника равна 3 и 4 см найди гипотенузу и площадь треугольника
Гипотенуза = 5, площадь =6 см2