Очевидно, что внутри отрезка AB такой точки существовать не может (если бы существовало, тогда сумма двух меньших отрезков должна быть больше длины исходной, что является противоречием), поэтому эта точка должна лежать где-то за пределами отрезка (по условию же сказано, что нужно найти точки на прямой, а не внутри отрезка).
Пусть l - расстояние от искомой точки X до A, тогда l + 6 - это расстояние от X до B. Тогда справедливо уравнение:
Значит, точка X должна отстоять от точки A на 2 см
Решение: 1. Площадь квадрата: S=a² S=7²=49(см²) 2. Площадь прямоугольника: S=a*b S=3*14=42 (дм²) 3. S=a² 8=a² a=√8=√(4*2)=2√2) (см) 4. Обозначим одну сторону прямоугольника за (х), тогда вторая сторона равна: 5*х=5х S=a*b 12500=x*5x 5x²=12500 x²=12500:5 х²=2500 х=√2500=50(м)- ширина прямоугольника 5*х=5*50=250(м) -длина прямоугольника Р=2*(a+b) Р=2*(50+250)=2*300=600(м) 5. Площадь прямоугольника равна S=a*b S=3,4*4,8=16,32 (м²) Площадь кафельной плитки: S=a² а=20см=0,2м S=0,2²=0,04 (м²) Количество кафельных плиток для, необходимых для облицовки: 16,32 : 0,04=408 (плиток)
rsd737
07.03.2022
Чтобы ответить на вопрос задачи, нужно найти длину основания сечения и его высоту. По условию сечение -квадрат, значит, достаточно найти длину одной стороны - хорды ВС, лежащей в плоскости основания цилиндра. Она удалена от оси на 8 см. Т.к. расстояние от точки (О) до прямой ( хорда ВС) измеряется перпендикуляром, проведем ОН. Перпендикуляр к хорде из центра окружности делит ее пополам. ВН=НС Треугольник ВОН - прямоугольный с гипотенузой=r=10, и катетом ОН=8. Этот треугольник "египетский, второй катет ВС равен 6 ( можно проверить по т.Пифагора) Тогда ВС=2*6=12 см АВ=ВС=12 см ⇒ Ѕ АВСД=12²=144 см²
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Зная, что ab=6 см, найдите на прямой ab все такие точки x, что xa+xb=10.
Объяснение:
Очевидно, что внутри отрезка AB такой точки существовать не может (если бы существовало, тогда сумма двух меньших отрезков должна быть больше длины исходной, что является противоречием), поэтому эта точка должна лежать где-то за пределами отрезка (по условию же сказано, что нужно найти точки на прямой, а не внутри отрезка).
Пусть l - расстояние от искомой точки X до A, тогда l + 6 - это расстояние от X до B. Тогда справедливо уравнение:
Значит, точка X должна отстоять от точки A на 2 см
Выглядит схематично это так:
2см 6см
---------------|----------------|------------------------------------------|----------------->
X A B
Это справедливо и для случая:
6см 2см
------------------|------------------------------------------|-------------|--------->
A B X
Больше таких точек нет.